Influence of Doping Engineering in 1 μm Drift Layer Quasi‐Vertical Fin Field‐Effect Transistor for Achieving >139 V Breakdown Voltage

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Physica Status Solidi A-applications and Materials Science Pub Date : 2024-07-26 DOI:10.1002/pssa.202400137
Ancy Michel, Binola K. Jebalin I. V., S. Angen Franklin, Sylvia Juliet Rani, Angelin Delighta A., D. Nirmal
{"title":"Influence of Doping Engineering in 1 μm Drift Layer Quasi‐Vertical Fin Field‐Effect Transistor for Achieving >139 V Breakdown Voltage","authors":"Ancy Michel, Binola K. Jebalin I. V., S. Angen Franklin, Sylvia Juliet Rani, Angelin Delighta A., D. Nirmal","doi":"10.1002/pssa.202400137","DOIUrl":null,"url":null,"abstract":"A quasi‐vertical gallium nitride (GaN) fin field effect transistor (FinFET) is designed and analyzed to assess the performance of electrical parameters. The device is deployed on a silicon carbide (SiC) substrate and analyzed using technology computer‐aided design (TCAD). The donor concentration in the critical regions is identified as a significant limiting factor for FinFET electrical properties. Hence, the influence of channel and drift layer doping concentrations (Nd) on performance characteristics is investigated in this work. The electrical characteristics such as threshold voltage, <jats:italic>I</jats:italic><jats:sub>ON</jats:sub>/<jats:italic>I</jats:italic><jats:sub>OFF</jats:sub> ratio, subthreshold swing (SS), specific ON‐resistance, and breakdown voltage (<jats:italic>V</jats:italic><jats:sub>BV</jats:sub>) are evaluated for various doping profiles. The doping profile with channel and drift layer concentration of 4 × 10<jats:sup>15 </jats:sup>cm<jats:sup>−3</jats:sup> for a 300 nm fin width and 1 μm thick drift layer exhibits normally OFF behavior with a threshold voltage (<jats:italic>V</jats:italic><jats:sub>t</jats:sub>) of 1.5 V. It also demonstrates a <jats:italic>V</jats:italic><jats:sub>BV</jats:sub> of 139 V. The corresponding doping profile reveals a low SS of 61 mV dec<jats:sup>−1</jats:sup>, which is comparable to other similar power devices. This demonstrates the significant potential of the device for medium‐power switching applications.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"33 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400137","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A quasi‐vertical gallium nitride (GaN) fin field effect transistor (FinFET) is designed and analyzed to assess the performance of electrical parameters. The device is deployed on a silicon carbide (SiC) substrate and analyzed using technology computer‐aided design (TCAD). The donor concentration in the critical regions is identified as a significant limiting factor for FinFET electrical properties. Hence, the influence of channel and drift layer doping concentrations (Nd) on performance characteristics is investigated in this work. The electrical characteristics such as threshold voltage, ION/IOFF ratio, subthreshold swing (SS), specific ON‐resistance, and breakdown voltage (VBV) are evaluated for various doping profiles. The doping profile with channel and drift layer concentration of 4 × 1015 cm−3 for a 300 nm fin width and 1 μm thick drift layer exhibits normally OFF behavior with a threshold voltage (Vt) of 1.5 V. It also demonstrates a VBV of 139 V. The corresponding doping profile reveals a low SS of 61 mV dec−1, which is comparable to other similar power devices. This demonstrates the significant potential of the device for medium‐power switching applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1 μm 漂移层准垂直鳍式场效应晶体管中的掺杂工程对实现 >139 V 击穿电压的影响
设计并分析了一种准垂直氮化镓(GaN)鳍式场效应晶体管(FinFET),以评估其电气参数性能。该器件安装在碳化硅(SiC)衬底上,并使用技术计算机辅助设计(TCAD)进行分析。临界区的供体浓度被认为是 FinFET 电气性能的重要限制因素。因此,本文研究了沟道和漂移层掺杂浓度 (Nd) 对性能特性的影响。针对不同的掺杂曲线,对阈值电压、离子/离子交换比、亚阈值摆幅(SS)、比导通电阻和击穿电压(VBV)等电气特性进行了评估。沟道和漂移层浓度为 4 × 1015 cm-3、鳍片宽度为 300 nm、漂移层厚度为 1 μm 的掺杂曲线表现出正常关断行为,阈值电压 (Vt) 为 1.5 V。这证明了该器件在中等功率开关应用方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
5.00%
发文量
393
审稿时长
2 months
期刊介绍: The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.
期刊最新文献
Plasma‐Assisted Preparation and Properties of Chitosan‐Based Magnetic Hydrogels Performance Enhancement of SnS Solar Cell with Tungsten Disulfide Electron Transport Layer and Molybdenum Trioxide Hole Transport Layer Advancements in Piezoelectric‐Enabled Devices for Optical Communication Structural Distortions and Short‐Range Magnetism in a Honeycomb Iridate Cu3ZnIr2O6 Enhancing Reliability and Regeneration of Single Passivated Emitter Rear Contact Solar Cell Modules through Alternating Current Power Application to Mitigate Light and Elevated Temperature‐Induced Degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1