Clara Rittmann, Ella S. Supik, Marion Drießen, Friedemann D. Heinz, Yves P. Botchak Mouafi, Florian Schindler, Charlotte Weiss, Martin C. Schubert, Stefan Janz
{"title":"Recombination Activity of Crystal Defects in Epitaxially Grown Silicon Wafers for Highly Efficient Solar Cells","authors":"Clara Rittmann, Ella S. Supik, Marion Drießen, Friedemann D. Heinz, Yves P. Botchak Mouafi, Florian Schindler, Charlotte Weiss, Martin C. Schubert, Stefan Janz","doi":"10.1002/pssa.202400226","DOIUrl":null,"url":null,"abstract":"Aiming for highly efficient solar cells based on wafers with a low carbon footprint, silicon (Si) EpiWafers are grown epitaxially on reusable, highly doped Si substrates with a stack of porous Si layers (PorSi) for detachment. A state‐of‐the‐art p‐type Si EpiWafer exhibiting a minority charge carrier lifetime of up to 2.2 ms detected at an excess charge carrier density of ≈1 × 10<jats:sup>15</jats:sup> cm<jats:sup>−3</jats:sup> by photoluminescence (PL) imaging is presented. This translates to a predicted solar cell efficiency of 25.6%, calculated by efficiency limiting bulk recombination analysis (ELBA), and corresponds to losses of less than 1%<jats:sub>abs</jats:sub> compared to the theoretical limit of the investigated solar cell concept. A detailed loss analysis shows that the major remaining quality limitations are structural defects, specifically stacking faults (SFs). Therefore, the recombination activity of isolated SFs in epitaxially grown reference (EpiRef) wafers on polished substrates without a PorSi is assessed by highly resolved μPL mappings. The recombination activity rises with the number of dislocations within an SF as demonstrated by a comparison to microscope images. When using highly doped substrates, as currently required for EpiWafer fabrication, EpiRef wafers show more SFs exhibiting additionally a higher number of dislocations than SFs in EpiRef wafers on moderately doped substrates.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"16 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400226","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aiming for highly efficient solar cells based on wafers with a low carbon footprint, silicon (Si) EpiWafers are grown epitaxially on reusable, highly doped Si substrates with a stack of porous Si layers (PorSi) for detachment. A state‐of‐the‐art p‐type Si EpiWafer exhibiting a minority charge carrier lifetime of up to 2.2 ms detected at an excess charge carrier density of ≈1 × 1015 cm−3 by photoluminescence (PL) imaging is presented. This translates to a predicted solar cell efficiency of 25.6%, calculated by efficiency limiting bulk recombination analysis (ELBA), and corresponds to losses of less than 1%abs compared to the theoretical limit of the investigated solar cell concept. A detailed loss analysis shows that the major remaining quality limitations are structural defects, specifically stacking faults (SFs). Therefore, the recombination activity of isolated SFs in epitaxially grown reference (EpiRef) wafers on polished substrates without a PorSi is assessed by highly resolved μPL mappings. The recombination activity rises with the number of dislocations within an SF as demonstrated by a comparison to microscope images. When using highly doped substrates, as currently required for EpiWafer fabrication, EpiRef wafers show more SFs exhibiting additionally a higher number of dislocations than SFs in EpiRef wafers on moderately doped substrates.
期刊介绍:
The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.