Identification and inference of outcome conditioned partial effects of general interventions

Zhengyu Zhang, Zequn Jin, Lihua Lin
{"title":"Identification and inference of outcome conditioned partial effects of general interventions","authors":"Zhengyu Zhang, Zequn Jin, Lihua Lin","doi":"arxiv-2407.16950","DOIUrl":null,"url":null,"abstract":"This paper proposes a new class of distributional causal quantities, referred\nto as the \\textit{outcome conditioned partial policy effects} (OCPPEs), to\nmeasure the \\textit{average} effect of a general counterfactual intervention of\na target covariate on the individuals in different quantile ranges of the\noutcome distribution. The OCPPE approach is valuable in several aspects: (i) Unlike the\nunconditional quantile partial effect (UQPE) that is not $\\sqrt{n}$-estimable,\nan OCPPE is $\\sqrt{n}$-estimable. Analysts can use it to capture heterogeneity\nacross the unconditional distribution of $Y$ as well as obtain accurate\nestimation of the aggregated effect at the upper and lower tails of $Y$. (ii)\nThe semiparametric efficiency bound for an OCPPE is explicitly derived. (iii)\nWe propose an efficient debiased estimator for OCPPE, and provide feasible\nuniform inference procedures for the OCPPE process. (iv) The efficient doubly\nrobust score for an OCPPE can be used to optimize infinitesimal nudges to a\ncontinuous treatment by maximizing a quantile specific Empirical Welfare\nfunction. We illustrate the method by analyzing how anti-smoking policies\nimpact low percentiles of live infants' birthweights.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a new class of distributional causal quantities, referred to as the \textit{outcome conditioned partial policy effects} (OCPPEs), to measure the \textit{average} effect of a general counterfactual intervention of a target covariate on the individuals in different quantile ranges of the outcome distribution. The OCPPE approach is valuable in several aspects: (i) Unlike the unconditional quantile partial effect (UQPE) that is not $\sqrt{n}$-estimable, an OCPPE is $\sqrt{n}$-estimable. Analysts can use it to capture heterogeneity across the unconditional distribution of $Y$ as well as obtain accurate estimation of the aggregated effect at the upper and lower tails of $Y$. (ii) The semiparametric efficiency bound for an OCPPE is explicitly derived. (iii) We propose an efficient debiased estimator for OCPPE, and provide feasible uniform inference procedures for the OCPPE process. (iv) The efficient doubly robust score for an OCPPE can be used to optimize infinitesimal nudges to a continuous treatment by maximizing a quantile specific Empirical Welfare function. We illustrate the method by analyzing how anti-smoking policies impact low percentiles of live infants' birthweights.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
识别和推断以结果为条件的一般干预措施的部分效果
本文提出了一类新的分布因果量,称为 "背景{结果条件部分政策效应}(OCPPEs)",用于测量目标协变量的一般反事实干预对结果分布不同量级范围内个体的 "背景{平均}效应"。OCPPE 方法在以下几个方面很有价值:(i) 与不可 $\sqrt{n}$ 估计的条件量子部分效应(UQPE)不同,OCPPE 是可 $\sqrt{n}$ 估计的。分析师可以用它来捕捉整个 $Y$ 无条件分布的异质性,并获得对 $Y$ 上尾和下尾聚集效应的精确估计。 (ii) 明确推导出 OCPPE 的半参数效率约束。(iii) 我们提出了 OCPPE 的高效去偏估计器,并为 OCPPE 过程提供了可行的统一推断程序。(iv) OCPPE 的高效双稳健得分可用于通过最大化量子特定经验福利函数来优化对连续治疗的无穷小点拨。我们通过分析反吸烟政策如何影响活产婴儿出生体重的低百分位数来说明该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1