Why you should also use OLS estimation of tail exponents

Thiago Trafane Oliveira SantosCentral Bank of Brazil, Brasília, Brazil. Department of %Economics, University of Brasilia, Brazil, Daniel Oliveira CajueiroDepartment of Economics, University of Brasilia, Brazil. National Institute of Science and Technology for Complex Systems
{"title":"Why you should also use OLS estimation of tail exponents","authors":"Thiago Trafane Oliveira SantosCentral Bank of Brazil, Brasília, Brazil. Department of %Economics, University of Brasilia, Brazil, Daniel Oliveira CajueiroDepartment of Economics, University of Brasilia, Brazil. National Institute of Science and Technology for Complex Systems","doi":"arxiv-2409.10448","DOIUrl":null,"url":null,"abstract":"Even though practitioners often estimate Pareto exponents running OLS\nrank-size regressions, the usual recommendation is to use the Hill MLE with a\nsmall-sample correction instead, due to its unbiasedness and efficiency. In\nthis paper, we advocate that you should also apply OLS in empirical\napplications. On the one hand, we demonstrate that, with a small-sample\ncorrection, the OLS estimator is also unbiased. On the other hand, we show that\nthe MLE assigns significantly greater weight to smaller observations. This\nsuggests that the OLS estimator may outperform the MLE in cases where the\ndistribution is (i) strictly Pareto but only in the upper tail or (ii)\nregularly varying rather than strictly Pareto. We substantiate our theoretical\nfindings with Monte Carlo simulations and real-world applications,\ndemonstrating the practical relevance of the OLS method in estimating tail\nexponents.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Even though practitioners often estimate Pareto exponents running OLS rank-size regressions, the usual recommendation is to use the Hill MLE with a small-sample correction instead, due to its unbiasedness and efficiency. In this paper, we advocate that you should also apply OLS in empirical applications. On the one hand, we demonstrate that, with a small-sample correction, the OLS estimator is also unbiased. On the other hand, we show that the MLE assigns significantly greater weight to smaller observations. This suggests that the OLS estimator may outperform the MLE in cases where the distribution is (i) strictly Pareto but only in the upper tail or (ii) regularly varying rather than strictly Pareto. We substantiate our theoretical findings with Monte Carlo simulations and real-world applications, demonstrating the practical relevance of the OLS method in estimating tail exponents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为什么也应使用 OLS 估算尾指数
尽管实践者经常使用 OLS秩和回归估计帕累托指数,但通常的建议是使用希尔 MLE 并进行小样本校正,因为它无偏且高效。在本文中,我们主张在实证应用中也应该使用 OLS。一方面,我们证明带小样本校正的 OLS 估计器也是无偏的。另一方面,我们证明 MLE 对较小观测值的权重明显更大。这表明,在分布(i)严格帕累托但仅在上尾部,或(ii)有规律变化而非严格帕累托的情况下,OLS 估计结果可能优于 MLE。我们通过蒙特卡罗模拟和实际应用证实了我们的理论发现,证明了 OLS 方法在估计 tailexponents 中的实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1