Ting-Wu Wang, Eric J. Beh, Rosaria Lombardo, Ian W. Renner
{"title":"Profile transformations for reciprocal averaging and singular value decomposition","authors":"Ting-Wu Wang, Eric J. Beh, Rosaria Lombardo, Ian W. Renner","doi":"10.1007/s00180-024-01517-x","DOIUrl":null,"url":null,"abstract":"<p>Power transformations of count data, including cell frequencies of a contingency table, have been well understood for nearly 100 years, with much of the attention focused on the square root transformation. Over the past 15 years, this topic has been the focus of some new insights into areas of correspondence analysis where two forms of power transformation have been discussed. One type considers the impact of raising the joint proportions of the cell frequencies of a table to a known power while the other examines the power transformation of the relative distribution of the cell frequencies. While the foundations of the graphical features of correspondence analysis rest with the numerical algorithms like reciprocal averaging, and other analogous techniques, discussions of the role of power transformations in reciprocal averaging have not been described. Therefore, this paper examines this link where a power transformation is applied to the cell frequencies of a two-way contingency table. In doing so, we show that reciprocal averaging can be performed under such a transformation to obtain row and column scores that provide the maximum association between the variables and the greatest discrimination between the categories. Finally, we discuss the connection between performing reciprocal averaging and singular value decomposition under this type of power transformation. The <span>R</span> function, <span>powerRA.exe</span> is included in the Appendix and performs reciprocal averaging of a power transformation of the cell frequencies of a two-way contingency table.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01517-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Power transformations of count data, including cell frequencies of a contingency table, have been well understood for nearly 100 years, with much of the attention focused on the square root transformation. Over the past 15 years, this topic has been the focus of some new insights into areas of correspondence analysis where two forms of power transformation have been discussed. One type considers the impact of raising the joint proportions of the cell frequencies of a table to a known power while the other examines the power transformation of the relative distribution of the cell frequencies. While the foundations of the graphical features of correspondence analysis rest with the numerical algorithms like reciprocal averaging, and other analogous techniques, discussions of the role of power transformations in reciprocal averaging have not been described. Therefore, this paper examines this link where a power transformation is applied to the cell frequencies of a two-way contingency table. In doing so, we show that reciprocal averaging can be performed under such a transformation to obtain row and column scores that provide the maximum association between the variables and the greatest discrimination between the categories. Finally, we discuss the connection between performing reciprocal averaging and singular value decomposition under this type of power transformation. The R function, powerRA.exe is included in the Appendix and performs reciprocal averaging of a power transformation of the cell frequencies of a two-way contingency table.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.