Bi4O5Br2/COF S-Scheme Heterojunctions for Boosting H2O2 Photoproduction under Air and Pure Water

IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Materials Letters Pub Date : 2024-07-26 DOI:10.1021/acsmaterialslett.4c01273
Jie-Yu Yue, Zi-Xian Pan, Peng Yang, Bo Tang
{"title":"Bi4O5Br2/COF S-Scheme Heterojunctions for Boosting H2O2 Photoproduction under Air and Pure Water","authors":"Jie-Yu Yue, Zi-Xian Pan, Peng Yang, Bo Tang","doi":"10.1021/acsmaterialslett.4c01273","DOIUrl":null,"url":null,"abstract":"Photosynthesizing H<sub>2</sub>O<sub>2</sub> by the oxygen reduction reaction (ORR) and the water oxidation reaction (WOR) is a promising green avenue for H<sub>2</sub>O<sub>2</sub> generation but is limited by the charge carrier recombination rate and sluggish reaction kinetics. Herein, the Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub>/COF step-scheme (S-scheme) heterojunction (named BIT) is created for the first time by covalent organic frameworks (TTD-COF) and Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub>, with an increased charge carrier separation efficiency and H<sub>2</sub>O<sub>2</sub> photosynthetic activity. Under air and pure water, BIT6 exhibits the highest H<sub>2</sub>O<sub>2</sub> production rate of 5221 μmol g<sup>–1</sup> h<sup>–1</sup>, which is 20 and 1.7 times greater than that of the individual Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> and TTD-COF. Subsequent mechanism analysis reveals that BIT6 photosynthesizes H<sub>2</sub>O<sub>2</sub> through overpowering indirect 2e<sup>–</sup> ORR paths (O<sub>2</sub>–O<sub>2</sub><sup>• –</sup>–H<sub>2</sub>O<sub>2</sub> and O<sub>2</sub>–O<sub>2</sub><sup>• –</sup>–O<sub>2</sub><sup>1</sup>–H<sub>2</sub>O<sub>2</sub>) and weak direct 2e<sup>–</sup> WOR pathways. Moreover, the in situ H<sub>2</sub>O<sub>2</sub> photogeneration process can be accompanied by the degradation of antibiotics. This study offers in-depth insights into the COF-based S-scheme heterojunctions for enhanced H<sub>2</sub>O<sub>2</sub> photoproduction.","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmaterialslett.4c01273","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photosynthesizing H2O2 by the oxygen reduction reaction (ORR) and the water oxidation reaction (WOR) is a promising green avenue for H2O2 generation but is limited by the charge carrier recombination rate and sluggish reaction kinetics. Herein, the Bi4O5Br2/COF step-scheme (S-scheme) heterojunction (named BIT) is created for the first time by covalent organic frameworks (TTD-COF) and Bi4O5Br2, with an increased charge carrier separation efficiency and H2O2 photosynthetic activity. Under air and pure water, BIT6 exhibits the highest H2O2 production rate of 5221 μmol g–1 h–1, which is 20 and 1.7 times greater than that of the individual Bi4O5Br2 and TTD-COF. Subsequent mechanism analysis reveals that BIT6 photosynthesizes H2O2 through overpowering indirect 2e ORR paths (O2–O2• ––H2O2 and O2–O2• ––O21–H2O2) and weak direct 2e WOR pathways. Moreover, the in situ H2O2 photogeneration process can be accompanied by the degradation of antibiotics. This study offers in-depth insights into the COF-based S-scheme heterojunctions for enhanced H2O2 photoproduction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于促进空气和纯水条件下 H2O2 光生成的 Bi4O5Br2/COF S 型异质结
通过氧还原反应(ORR)和水氧化反应(WOR)进行光合作用生成 H2O2 是一种前景广阔的绿色 H2O2 生成途径,但受到电荷载流子重组率和反应动力学缓慢的限制。在此,通过共价有机框架(TTD-COF)和 Bi4O5Br2,首次创建了 Bi4O5Br2/COF 阶梯式(S-scheme)异质结(命名为 BIT),提高了电荷载流子分离效率和 H2O2 光合活性。在空气和纯水条件下,BIT6 的 H2O2 生成速率最高,达到 5221 μmol g-1 h-1,分别是 Bi4O5Br2 和 TTD-COF 的 20 倍和 1.7 倍。随后的机理分析表明,BIT6 通过强间接 2e- ORR 途径(O2-O2---H2O2 和 O2-O2---O21-H2O2)和弱直接 2e- WOR 途径光合作用产生 H2O2。此外,原位 H2O2 光生过程可伴随抗生素的降解。这项研究深入揭示了基于 COF 的 S 型异质结在增强 H2O2 光生成方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Precise Regulation of Ultralow Conductance Attenuation in Single-Molecule Hexabenzocoronene Oligomers Interception and in Situ Eradication of Airborne Pathogens by Ecofriendly, Biodegradable Wooden Filters Modulation of the Photophysics and Internal Dynamics in a Zr Metal Organic Framework by the Inclusion of Fluorinated Guests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1