Rui Tian;Jiazhi Jiang;Jiangsu Du;Dan Huang;Yutong Lu
{"title":"Sophisticated Orchestrating Concurrent DLRM Training on CPU/GPU Platform","authors":"Rui Tian;Jiazhi Jiang;Jiangsu Du;Dan Huang;Yutong Lu","doi":"10.1109/TPDS.2024.3432620","DOIUrl":null,"url":null,"abstract":"Recommendation systems are essential to the operation of the majority of internet services, with Deep Learning Recommendation Models (DLRMs) serving as a crucial component. However, due to distinct computation, data access, and memory usage characteristics of recommendation models, the trainning of DLRMs may suffer from low resource utilization on prevalent heterogeneous CPU-GPU hardware platforms. Furthermore, as the majority of high-performance computing systems presently depend on multi-GPU computing nodes, the challenge of addressing low resource utilization becomes even more pronounced. Existing concurrent training solutions cannot be straightforwardly applied to DLRM due to various factors, such as insufficient fine-grained memory management and the lack of collaborative CPU-GPU scheduling. In this paper, we introduce RMixer, a scheduling framework that addresses these challenges by providing an efficient job management and scheduling mechanism for DLRM training jobs on heterogeneous CPU-GPU platforms. To facilitate training co-location, we first estimate the peak memory consumption of each job. Additionally, we track and collect resource utilization for DLRM training jobs. Based on the information of computational patterns, a batched job dispatcher with dynamic resource-complementary scheduling policy is proposed to co-locate DLRM training jobs on CPU-GPU platform. Scheduling strategies for both intra-GPU and inter-GPU scenarios were meticulously devised, with a focus on thoroughly examining individual GPU resource utilization and achieving a balanced state across multiple GPUs. Experimental results demonstrate that our implementation achieved up to 5.3× and 7.5× higher throughput on single GPU and 4 GPU respectively for training jobs involving various recommendation models.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 11","pages":"2177-2192"},"PeriodicalIF":5.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10607952/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Recommendation systems are essential to the operation of the majority of internet services, with Deep Learning Recommendation Models (DLRMs) serving as a crucial component. However, due to distinct computation, data access, and memory usage characteristics of recommendation models, the trainning of DLRMs may suffer from low resource utilization on prevalent heterogeneous CPU-GPU hardware platforms. Furthermore, as the majority of high-performance computing systems presently depend on multi-GPU computing nodes, the challenge of addressing low resource utilization becomes even more pronounced. Existing concurrent training solutions cannot be straightforwardly applied to DLRM due to various factors, such as insufficient fine-grained memory management and the lack of collaborative CPU-GPU scheduling. In this paper, we introduce RMixer, a scheduling framework that addresses these challenges by providing an efficient job management and scheduling mechanism for DLRM training jobs on heterogeneous CPU-GPU platforms. To facilitate training co-location, we first estimate the peak memory consumption of each job. Additionally, we track and collect resource utilization for DLRM training jobs. Based on the information of computational patterns, a batched job dispatcher with dynamic resource-complementary scheduling policy is proposed to co-locate DLRM training jobs on CPU-GPU platform. Scheduling strategies for both intra-GPU and inter-GPU scenarios were meticulously devised, with a focus on thoroughly examining individual GPU resource utilization and achieving a balanced state across multiple GPUs. Experimental results demonstrate that our implementation achieved up to 5.3× and 7.5× higher throughput on single GPU and 4 GPU respectively for training jobs involving various recommendation models.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.