{"title":"Hybrid Multi-Server Computation Offloading in Air–Ground Vehicular Networks Empowered by Federated Deep Reinforcement Learning","authors":"Xiaoqin Song;Quan Chen;Shumo Wang;Tiecheng Song;Lei Xu","doi":"10.1109/TNSE.2024.3432765","DOIUrl":null,"url":null,"abstract":"The proliferation of computation-intensive and delay-sensitive services in intelligent transportation systems, such as autonomous driving and vehicle-mounted infotainment services, presents a significant challenge for vehicular users (VUs) with limited resources. To address this issue, multi-access edge computing (MEC) has been considered a favorable solution to mitigate computation delay. This paper considers computation offloading for an air-ground integrated computing platform in vehicular networks. Specifically, we first propose a multi-agent twin delayed deep deterministic policy gradient (MATD3) algorithm to optimize the trajectory of UAVs. Then, an algorithm named federated upgraded dueling double deep Q network (FUD3QN) is proposed to meet quality of service (QoS) requirements. The algorithm allocates cross-domain resources after offloading decision-making, aiming to minimize delay and energy consumption while meeting reliability requirements, maximum tolerable delay, communication requirements, and computing limitations. Addressing the non-deterministic polynomial (NP)-hard problem, we employ a multi-agent federated learning and upgraded dueling double deep Q network algorithm (UD3QN) with centralized training and distributed execution. Simulation results illustrate that the MATD3-FUD3QN algorithm proposed significantly surpasses the baselines, highlighting the advantages of introducing UAVs to enhance transmission quality.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"11 6","pages":"5175-5189"},"PeriodicalIF":6.7000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10607960/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The proliferation of computation-intensive and delay-sensitive services in intelligent transportation systems, such as autonomous driving and vehicle-mounted infotainment services, presents a significant challenge for vehicular users (VUs) with limited resources. To address this issue, multi-access edge computing (MEC) has been considered a favorable solution to mitigate computation delay. This paper considers computation offloading for an air-ground integrated computing platform in vehicular networks. Specifically, we first propose a multi-agent twin delayed deep deterministic policy gradient (MATD3) algorithm to optimize the trajectory of UAVs. Then, an algorithm named federated upgraded dueling double deep Q network (FUD3QN) is proposed to meet quality of service (QoS) requirements. The algorithm allocates cross-domain resources after offloading decision-making, aiming to minimize delay and energy consumption while meeting reliability requirements, maximum tolerable delay, communication requirements, and computing limitations. Addressing the non-deterministic polynomial (NP)-hard problem, we employ a multi-agent federated learning and upgraded dueling double deep Q network algorithm (UD3QN) with centralized training and distributed execution. Simulation results illustrate that the MATD3-FUD3QN algorithm proposed significantly surpasses the baselines, highlighting the advantages of introducing UAVs to enhance transmission quality.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.