{"title":"A comprehensive review on different leaf fiber loading on PLA polymer matrix composite","authors":"Dibya P Sethy, Swarnalata Sahoo","doi":"10.1177/08927057241268832","DOIUrl":null,"url":null,"abstract":"Bio-sourced plastics are most widely essence among all potential materials to replace fossil based plastics which have many unfavorable impacts to the environment like global warming, land pollution, water pollution and global warming etc. Fossil based polymers that is polypropylene are mainly non biodegradable in nature and that tends to cause pollution on the earth surface and causes different harmful diseases if we do not provide proper disposal to waste polymers. To keep eye on that, this review paper focused on the replacement fossil based polymer with introducing biopolymer Polylatic Acid (PLA) polymer matrix composite with the incorporation of different leaf fiber. The intention of the current review is to represent the detailed idea for the development of PLA polymer matrix composite with the incorporation of different leaf fiber and with the proper selection compatibilizer to enhance the mechanical, degradation and other properties. Among these, leaves, once relegated to the realms of waste, have risen as potent contributors to the realm of fiber composites. The spotlight of exploration falls on green composites reinforced with leaf fibers, showcasing mechanical properties and modulus that surpass other classes of polymer composites. This revelation not only reshapes our understanding of plant-based fibers but also propels them into the forefront of innovation across industries. The modified composite can be used as various packaging materials in different areas like in textile industry, medicine and drug packaging, food industry for food packaging etc. This overview will support the researchers to engage in the development of degradation capability with enhancing mechanical properties of bio-sourced materials as composite materials. In essence, this review not only describes the essence of leaf fiber based composites but also acts as a main role for a greener, more sustainable future. It deliberates the necessity of leaves, transforming them from waste into a usable product thereby producing more strength in composite materials.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermoplastic Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/08927057241268832","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Bio-sourced plastics are most widely essence among all potential materials to replace fossil based plastics which have many unfavorable impacts to the environment like global warming, land pollution, water pollution and global warming etc. Fossil based polymers that is polypropylene are mainly non biodegradable in nature and that tends to cause pollution on the earth surface and causes different harmful diseases if we do not provide proper disposal to waste polymers. To keep eye on that, this review paper focused on the replacement fossil based polymer with introducing biopolymer Polylatic Acid (PLA) polymer matrix composite with the incorporation of different leaf fiber. The intention of the current review is to represent the detailed idea for the development of PLA polymer matrix composite with the incorporation of different leaf fiber and with the proper selection compatibilizer to enhance the mechanical, degradation and other properties. Among these, leaves, once relegated to the realms of waste, have risen as potent contributors to the realm of fiber composites. The spotlight of exploration falls on green composites reinforced with leaf fibers, showcasing mechanical properties and modulus that surpass other classes of polymer composites. This revelation not only reshapes our understanding of plant-based fibers but also propels them into the forefront of innovation across industries. The modified composite can be used as various packaging materials in different areas like in textile industry, medicine and drug packaging, food industry for food packaging etc. This overview will support the researchers to engage in the development of degradation capability with enhancing mechanical properties of bio-sourced materials as composite materials. In essence, this review not only describes the essence of leaf fiber based composites but also acts as a main role for a greener, more sustainable future. It deliberates the necessity of leaves, transforming them from waste into a usable product thereby producing more strength in composite materials.
期刊介绍:
The Journal of Thermoplastic Composite Materials is a fully peer-reviewed international journal that publishes original research and review articles on polymers, nanocomposites, and particulate-, discontinuous-, and continuous-fiber-reinforced materials in the areas of processing, materials science, mechanics, durability, design, non destructive evaluation and manufacturing science. This journal is a member of the Committee on Publication Ethics (COPE).