{"title":"Investigating the effect of deicing parameters using high-pressure water jet","authors":"Emmanuel Junior Arhin , Yuri Muzychka , Baafour Nyantekyi-Kwakye","doi":"10.1016/j.coldregions.2024.104277","DOIUrl":null,"url":null,"abstract":"<div><p>Maritime operations are impacted by ice accretion on decks, bulkheads, and offshore structures during the winter or in extremely frigid climates. In most cases, the traditional method of deicing maritime vessels is human labor, which requires enormous effort and lengthy hours for unsatisfactory results, particularly when the ice adhesion strength is high. This study experimentally examined combined effects of operational parameters, including operating pump pressure, nozzle geometry, water jet temperature, standoff distance, and time of cut, on the depth and width of a cut through an ice block. In comparison to other parameters, the influence of nozzle geometry on both the width and depth of cut was found to be more significant, with R-squared values of 85% and 62% respectively. Increasing the depth and width of the cut facilitated the delamination and disintegration of ice from an aluminum mold. This indicates that water jet deicing on maritime vessels could be effective, therefore achieving the objective of this study. The optimization of operational parameters is used to develop a cuttability chart for various thicknesses of accumulated ice on marine vessels.</p></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":"226 ","pages":"Article 104277"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X24001587","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Maritime operations are impacted by ice accretion on decks, bulkheads, and offshore structures during the winter or in extremely frigid climates. In most cases, the traditional method of deicing maritime vessels is human labor, which requires enormous effort and lengthy hours for unsatisfactory results, particularly when the ice adhesion strength is high. This study experimentally examined combined effects of operational parameters, including operating pump pressure, nozzle geometry, water jet temperature, standoff distance, and time of cut, on the depth and width of a cut through an ice block. In comparison to other parameters, the influence of nozzle geometry on both the width and depth of cut was found to be more significant, with R-squared values of 85% and 62% respectively. Increasing the depth and width of the cut facilitated the delamination and disintegration of ice from an aluminum mold. This indicates that water jet deicing on maritime vessels could be effective, therefore achieving the objective of this study. The optimization of operational parameters is used to develop a cuttability chart for various thicknesses of accumulated ice on marine vessels.
期刊介绍:
Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere.
Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost.
Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.