Research on Mathematical Model and Process Parameter Optimization of Rotary Hearth Furnace Process Toward Energy and Cost Saving

Yingpeng Dong, Yanbing Zong, Runsheng Xu, Yuancheng Huang, Jianliang Zhang, Rongrong Wang, Jinpeng Shi, Yongsheng Yang
{"title":"Research on Mathematical Model and Process Parameter Optimization of Rotary Hearth Furnace Process Toward Energy and Cost Saving","authors":"Yingpeng Dong, Yanbing Zong, Runsheng Xu, Yuancheng Huang, Jianliang Zhang, Rongrong Wang, Jinpeng Shi, Yongsheng Yang","doi":"10.1007/s11663-024-03190-3","DOIUrl":null,"url":null,"abstract":"<p>To explore the solutions of saving energy and cost of the rotary hearth furnace (RHF) direct reduction process, this paper constructed an energy consumption model, an economic evaluation model, and a carbon emission calculation model of the RHF direct reduction process. According to the actual production conditions of a steel plant, the influence of combustion air temperature and oxygen enrichment rate on the energy consumption, cost, and carbon emission of the RHF direct reduction process were studied. The calculation results show that for every 50 °C increase in the combustion air temperature, the process energy consumption, comprehensive cost, and carbon emission reduce by about 11 kgce, 42 CHY, and 44 kg, respectively. For every 2 pct increase in the oxygen enrichment rate of the combustion air, the corresponding values are about 10 kgce, 26 CHY, and 37 kg, respectively. In addition, the mathematical model established in this paper can be used to calculate the process energy consumption, cost, and carbon emissions under different raw material and fuel conditions, which is of great theoretical significance for the green and low-carbon transformation of the RHF direct reduction process.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"111 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-024-03190-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To explore the solutions of saving energy and cost of the rotary hearth furnace (RHF) direct reduction process, this paper constructed an energy consumption model, an economic evaluation model, and a carbon emission calculation model of the RHF direct reduction process. According to the actual production conditions of a steel plant, the influence of combustion air temperature and oxygen enrichment rate on the energy consumption, cost, and carbon emission of the RHF direct reduction process were studied. The calculation results show that for every 50 °C increase in the combustion air temperature, the process energy consumption, comprehensive cost, and carbon emission reduce by about 11 kgce, 42 CHY, and 44 kg, respectively. For every 2 pct increase in the oxygen enrichment rate of the combustion air, the corresponding values are about 10 kgce, 26 CHY, and 37 kg, respectively. In addition, the mathematical model established in this paper can be used to calculate the process energy consumption, cost, and carbon emissions under different raw material and fuel conditions, which is of great theoretical significance for the green and low-carbon transformation of the RHF direct reduction process.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以节约能源和成本为目标的转炉工艺数学模型和工艺参数优化研究
为探索转底炉(RHF)直接还原工艺的节能降耗方案,本文构建了 RHF 直接还原工艺的能耗模型、经济评价模型和碳排放计算模型。根据某钢铁厂的实际生产条件,研究了燃烧空气温度和富氧率对 RHF 直接还原工艺的能耗、成本和碳排放的影响。计算结果表明,燃烧空气温度每升高 50 °C,工艺能耗、综合成本和碳排放量分别降低约 11 kgce、42 CHY 和 44 kg。助燃空气富氧率每增加 2 个百分点,相应的数值分别为 10 kgce、26 CHY 和 37 kg。此外,本文建立的数学模型可用于计算不同原料和燃料条件下的工艺能耗、成本和碳排放,对 RHF 直接还原工艺的绿色低碳改造具有重要的理论意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synergistic Effect of Graphite and Fly Ash on the Microstructural Evolution and Tribological Characteristics of Fe-Cu-Based Wind Turbine-Sintered Brake Pad Materials Production of Low-Oxygen Ti Powder by Magnesiothermic Reduction of TiO2 in MgCl2–KCl–CeCl3 Molten Salt Coupled CFD-DEM with Flow and Heat Transfer to Investigate the Melting and Motion of Alloy Manufacturing High Strength-Toughness High-Nitrogen Stainless Bearing Steel 30Cr15Mo1VN by Pressurized Duplex Process In Situ Observation of Aggregation of Calcium Aluminate Inclusions at Steel/Ar Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1