Lin Zenghuang, Li Tianyu, Chen Xiangru, Li Lijuan, Zhao Yu, Yuan Huazhi, Zhong Honggang, Zhai Qijie, Han Qingyou
{"title":"Hot Tearing of Steel Under Different Dendritic Growth Directions","authors":"Lin Zenghuang, Li Tianyu, Chen Xiangru, Li Lijuan, Zhao Yu, Yuan Huazhi, Zhong Honggang, Zhai Qijie, Han Qingyou","doi":"10.1007/s11663-024-03203-1","DOIUrl":null,"url":null,"abstract":"<p>Hot tears are typically classified as intergranular fractures, but recently we have found evidence of dendritic main stem fracture during the hot tearing in steel. This study conducted mechanical property tests on the mushy zone of the steel with stress directions parallel or perpendicular to the primary dendritic arms. The fracture strength and brittle toughness under the two conditions were clearly contrasted. Hot tearing prediction should consider the effects of dendrite morphology and stress direction.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-024-03203-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hot tears are typically classified as intergranular fractures, but recently we have found evidence of dendritic main stem fracture during the hot tearing in steel. This study conducted mechanical property tests on the mushy zone of the steel with stress directions parallel or perpendicular to the primary dendritic arms. The fracture strength and brittle toughness under the two conditions were clearly contrasted. Hot tearing prediction should consider the effects of dendrite morphology and stress direction.