Investigating hydrological recovery in regenerating coniferous stands in snow-dominated watersheds using simultaneous localization and mapping-enabled mobile terrestrial LiDAR
Cydne R. Potter, Kim C. Green, Daniel L. Peters, K. Olaf Niemann
{"title":"Investigating hydrological recovery in regenerating coniferous stands in snow-dominated watersheds using simultaneous localization and mapping-enabled mobile terrestrial LiDAR","authors":"Cydne R. Potter, Kim C. Green, Daniel L. Peters, K. Olaf Niemann","doi":"10.1002/hyp.15247","DOIUrl":null,"url":null,"abstract":"<p>The return of snow accumulation and ablation processes in regenerating forests to pre-disturbance conditions, collectively referred to as hydrological recovery, has been investigated in past decades through manual snow surveys in adjacent open, juvenile, and mature stands. The outcomes of such studies provide a general understanding of hydrological recovery but lack transferability to areas where stand structure and terrain conditions differ from the reference sites. The application of mobile terrestrial LiDAR to investigate peak snow water equivalent (SWE) and ablation rates beneath regenerating trees in a space-for-time substitution study design provides new insights on the process of hydrological recovery in snowmelt forests of British Columbia, Canada. Outcomes of this study better quantify the influence of tree growth on peak SWE and ablation rate at both the tree and stand level for north aspect mixed conifer stands. Recovery of these two processes differ with recovery of Peak SWE beginning when the trees in a stand reach 3 m in height and recovery of ablation rates beginning once trees reach 5 m in height. Additionally, the process of negative ablation recovery in early juvenile stands reported in previous studies is herein clearly observed, providing an improved understanding of forest canopy effects on hydrological recovery in juvenile stands. The methods used in this study, which are internationally applicable, increase transferability of outcomes to stands where canopy characteristics (i.e., height, crown cover, and heterogeneity) are not represented in reference sites.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 7","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.15247","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.15247","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
The return of snow accumulation and ablation processes in regenerating forests to pre-disturbance conditions, collectively referred to as hydrological recovery, has been investigated in past decades through manual snow surveys in adjacent open, juvenile, and mature stands. The outcomes of such studies provide a general understanding of hydrological recovery but lack transferability to areas where stand structure and terrain conditions differ from the reference sites. The application of mobile terrestrial LiDAR to investigate peak snow water equivalent (SWE) and ablation rates beneath regenerating trees in a space-for-time substitution study design provides new insights on the process of hydrological recovery in snowmelt forests of British Columbia, Canada. Outcomes of this study better quantify the influence of tree growth on peak SWE and ablation rate at both the tree and stand level for north aspect mixed conifer stands. Recovery of these two processes differ with recovery of Peak SWE beginning when the trees in a stand reach 3 m in height and recovery of ablation rates beginning once trees reach 5 m in height. Additionally, the process of negative ablation recovery in early juvenile stands reported in previous studies is herein clearly observed, providing an improved understanding of forest canopy effects on hydrological recovery in juvenile stands. The methods used in this study, which are internationally applicable, increase transferability of outcomes to stands where canopy characteristics (i.e., height, crown cover, and heterogeneity) are not represented in reference sites.
期刊介绍:
Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.