Total phosphorus (TP) and nitrate are important non-conservative contaminants of streams. They vary strongly in response to climatic, hydrologic, and other drivers and are affected by different flow paths. Water residence and travel time distributions carrying information about sources of streamflow can potentially provide a basis for modelling nitrate and TP dynamics. In this study, we use a travel time model coupled with age—concentration relationships to simulate nitrate and TP concentrations in the Duck River catchment, NW Tasmania, Australia. A modified version of the Tran-SAS model was used with time-varying beta storage selection functions, calibrated against high-frequency electrical conductivity (EC) observations. Concentrations of TP and nitrate were then modelled using the water TTDs coupled with age-concentration relationships for TP and nitrate. This approach separated biogeochemical effects from water travel time and ensured consistent TTDs underpinning the transport of different nutrients. Two years (2008 and 2009 water years) of high-frequency nutrient concentrations were used for model calibration and validation. It was initially hypothesised that the age-concentration relationships for nitrate and TP could be temporally fixed, with the seasonal variation in residence time distribution capturing any seasonality in nutrient behaviour. The models performed moderately under this hypothesis; however, residual analysis clearly demonstrated seasonal declines in the concentrations of TP and nitrate during events across the high flow season. Simulations of TP and nitrate were markedly improved by using different source concentrations: one for the early high flow season and the other for the remainder of the year. Both Nash-Sutcliffe Efficiency and the combined seasonal and event dynamics of nitrate and TP were markedly improved by using different source concentrations for these two different periods. This suggests that land management and biogeochemical processing are important influences on the temporal dynamics of nutrients in streams. The study informs future developments of TTD-based water quality modelling and demonstrates the need to include temporally dynamic nutrient source concentrations for young water.
{"title":"Modelling of Total Phosphorus and Nitrate Using a Travel Time Approach in the Duck River Catchment, Australia","authors":"Zahra Riazi, Andrew William Western","doi":"10.1002/hyp.70104","DOIUrl":"https://doi.org/10.1002/hyp.70104","url":null,"abstract":"<p>Total phosphorus (TP) and nitrate are important non-conservative contaminants of streams. They vary strongly in response to climatic, hydrologic, and other drivers and are affected by different flow paths. Water residence and travel time distributions carrying information about sources of streamflow can potentially provide a basis for modelling nitrate and TP dynamics. In this study, we use a travel time model coupled with age—concentration relationships to simulate nitrate and TP concentrations in the Duck River catchment, NW Tasmania, Australia. A modified version of the Tran-SAS model was used with time-varying beta storage selection functions, calibrated against high-frequency electrical conductivity (EC) observations. Concentrations of TP and nitrate were then modelled using the water TTDs coupled with age-concentration relationships for TP and nitrate. This approach separated biogeochemical effects from water travel time and ensured consistent TTDs underpinning the transport of different nutrients. Two years (2008 and 2009 water years) of high-frequency nutrient concentrations were used for model calibration and validation. It was initially hypothesised that the age-concentration relationships for nitrate and TP could be temporally fixed, with the seasonal variation in residence time distribution capturing any seasonality in nutrient behaviour. The models performed moderately under this hypothesis; however, residual analysis clearly demonstrated seasonal declines in the concentrations of TP and nitrate during events across the high flow season. Simulations of TP and nitrate were markedly improved by using different source concentrations: one for the early high flow season and the other for the remainder of the year. Both Nash-Sutcliffe Efficiency and the combined seasonal and event dynamics of nitrate and TP were markedly improved by using different source concentrations for these two different periods. This suggests that land management and biogeochemical processing are important influences on the temporal dynamics of nutrients in streams. The study informs future developments of TTD-based water quality modelling and demonstrates the need to include temporally dynamic nutrient source concentrations for young water.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"39 3","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.70104","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143638910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amanda D. Alvis, Charles H. Luce, Erkan Istanbulluoglu, Friedrich Knuth, Lauren Wittkopf, David Shean, Gregory Stewart
Flow pathways on unpaved forest roads are critical determinants of surface runoff and sediment transport. These flow pathways can be largely altered through road deformation caused by heavy traffic, with one of the most common types of deformation being ruts. Historically, rut development has been studied using cross-sectional analyses. More recently, remote sensing techniques, such as structure-from-motion (SfM) or terrestrial LiDAR scanning (TLS), have demonstrated their utility in mapping ruts on forest roads. However, applications of these data are limited, especially with respect to flow pathways on the road surface. Here we used SfM, with validation from TLS, to examine the spatially comprehensive development of ruts and their effects on forest road flow pathways and relative sediment transport potential. We carried out a small-scale experiment at two field sites in western Washington using unoccupied aerial vehicles (UAVs) to obtain digital elevation models (DEMs) of mainline logging road surfaces over 3 seasons. These UAV-derived DEMs were used in an elevation change analysis and a simple flow routing model to examine the evolution of ruts and the impacts thereof. We found that: (1) the relationship between measures of rut incision and time since grading was nonlinear at both sites for all seasons with sufficient data; (2) as ruts developed, the flow pathways on the road surface were altered; (3) the relative transport potential of the road surfaces increased overall as ruts developed; and (4) drainage system metrics reveal a threshold rut incision depth for increased transport potential and flow network change. Our results demonstrate that a great deal of useful information can be extracted by using SfM DEMs for the analysis of rut evolution. Additionally, our results allow us to examine how rutting may affect the utilisation of erosion control treatments in roadside ditch lines and the sediment yield of the road surface.
{"title":"Spatiotemporal Evolution of Forest Road Rutting and Flow Pathways Examined Using Unoccupied Aerial Vehicles (UAVs)","authors":"Amanda D. Alvis, Charles H. Luce, Erkan Istanbulluoglu, Friedrich Knuth, Lauren Wittkopf, David Shean, Gregory Stewart","doi":"10.1002/hyp.70105","DOIUrl":"https://doi.org/10.1002/hyp.70105","url":null,"abstract":"<p>Flow pathways on unpaved forest roads are critical determinants of surface runoff and sediment transport. These flow pathways can be largely altered through road deformation caused by heavy traffic, with one of the most common types of deformation being ruts. Historically, rut development has been studied using cross-sectional analyses. More recently, remote sensing techniques, such as structure-from-motion (SfM) or terrestrial LiDAR scanning (TLS), have demonstrated their utility in mapping ruts on forest roads. However, applications of these data are limited, especially with respect to flow pathways on the road surface. Here we used SfM, with validation from TLS, to examine the spatially comprehensive development of ruts and their effects on forest road flow pathways and relative sediment transport potential. We carried out a small-scale experiment at two field sites in western Washington using unoccupied aerial vehicles (UAVs) to obtain digital elevation models (DEMs) of mainline logging road surfaces over 3 seasons. These UAV-derived DEMs were used in an elevation change analysis and a simple flow routing model to examine the evolution of ruts and the impacts thereof. We found that: (1) the relationship between measures of rut incision and time since grading was nonlinear at both sites for all seasons with sufficient data; (2) as ruts developed, the flow pathways on the road surface were altered; (3) the relative transport potential of the road surfaces increased overall as ruts developed; and (4) drainage system metrics reveal a threshold rut incision depth for increased transport potential and flow network change. Our results demonstrate that a great deal of useful information can be extracted by using SfM DEMs for the analysis of rut evolution. Additionally, our results allow us to examine how rutting may affect the utilisation of erosion control treatments in roadside ditch lines and the sediment yield of the road surface.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"39 3","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.70105","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143639268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}