Although there is increasing interest in biochar as a soil amendment, its antierosive effectiveness is still uncertain. This investigation aims at evaluating how wood-biochar affects rill erosion and hydrological connectivity in amended soils. In this paper, at first, plot experiments were performed entering a clear inflow into two rills, named rill3 and rill5, incised in a soil amended with an initial biochar concentration BC in weight of 3% and 5%, respectively. For each rill, terrestrial photogrammetry was used to obtain the Digital Elevation Models (DEM) before and after the experimental runs, and the consequent DEM of difference (DoD) was used to calculate the total volume of the eroded mixture (sediment and biochar), while three samples of rill outflow discharge were collected to determine the biochar and sediment rates. Then, small laboratory samples of the soil, biochar, and mixtures with different BC (1%, 3%, 5%, 10%, and 30%) were used to determine size and distribution of pores, and thus measure the structural and functional connectivity, by nuclear magnetic resonance (NMR) relaxometry with the fast field cycling (FFC) layout. The DoDs highlighted that the mixture volume for rill5 was lower than that for rill3. Moreover, the rill5 condition yielded a higher biochar percentage in the mixture. The NMR measurements demonstrated that the biochar addition increases the size of micropores and mesopores, and the macro-pore component is never dominant. Biochar concentrations greater than 5% do not produce appreciable changes in the pore distribution inside the mixture. The biochar component improves the structural connectivity up to BC = 5%. In the BC range of 0%–3%, FCI decreased as BC increased. In conclusion, a target biochar concentration of 5% allows for the mitigation of the rill erosion phenomena, favours the improvement of soil structural connectivity, and does not appreciably modify the functional connectivity.
{"title":"Wood-Biochar Influence on Rill Erosion Processes and Hydrological Connectivity in Amended Soils","authors":"Pellegrino Conte, Calogero Librici, Alessio Nicosia, Vincenzo Palmeri, Vincenzo Pampalone, Vito Ferro","doi":"10.1002/hyp.70093","DOIUrl":"https://doi.org/10.1002/hyp.70093","url":null,"abstract":"<p>Although there is increasing interest in biochar as a soil amendment, its antierosive effectiveness is still uncertain. This investigation aims at evaluating how wood-biochar affects rill erosion and hydrological connectivity in amended soils. In this paper, at first, plot experiments were performed entering a clear inflow into two rills, named rill<sub>3</sub> and rill<sub>5</sub>, incised in a soil amended with an initial biochar concentration <i>BC</i> in weight of 3% and 5%, respectively. For each rill, terrestrial photogrammetry was used to obtain the Digital Elevation Models (DEM) before and after the experimental runs, and the consequent DEM of difference (DoD) was used to calculate the total volume of the eroded mixture (sediment and biochar), while three samples of rill outflow discharge were collected to determine the biochar and sediment rates. Then, small laboratory samples of the soil, biochar, and mixtures with different <i>BC</i> (1%, 3%, 5%, 10%, and 30%) were used to determine size and distribution of pores, and thus measure the structural and functional connectivity, by nuclear magnetic resonance (NMR) relaxometry with the fast field cycling (FFC) layout. The DoDs highlighted that the mixture volume for rill<sub>5</sub> was lower than that for rill<sub>3</sub>. Moreover, the rill<sub>5</sub> condition yielded a higher biochar percentage in the mixture. The NMR measurements demonstrated that the biochar addition increases the size of micropores and mesopores, and the macro-pore component is never dominant. Biochar concentrations greater than 5% do not produce appreciable changes in the pore distribution inside the mixture. The biochar component improves the structural connectivity up to <i>BC</i> = 5%. In the <i>BC</i> range of 0%–3%, <i>FCI</i> decreased as <i>BC</i> increased. In conclusion, a target biochar concentration of 5% allows for the mitigation of the rill erosion phenomena, favours the improvement of soil structural connectivity, and does not appreciably modify the functional connectivity.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"39 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.70093","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143438772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In dry summer months, stream baseflow sourced from groundwater is essential to support aquatic ecosystems and anthropogenic water use. Hydrologic signatures, or metrics describing unique features of streamflow timeseries, are useful for quantifying and predicting these valuable baseflow and groundwater storage resources across continental scales. Hydrologic signatures can be predicted based on catchment attributes summarising climate and landscape and can be used to characterise baseflow and groundwater processes that cannot be directly measured. While past watershed-scale studies suggest that landscape attributes are important controls on baseflow and storage processes, recent regional-to-global scale modelling studies have instead found that landscape attributes have weaker relationships with hydrologic signatures of these processes than expected compared to climate attributes. In this study, we quantify two landscape attributes, average geologic age and the proportion of catchment area covered by wetlands. We investigate if incorporating these additional predictors into existing large-sample attribute datasets strengthens continental-scale, empirical relationships between landscape attributes and hydrologic signatures. We quantify 14 hydrologic signatures related to baseflow and groundwater processes in catchments across the contiguous United States, evaluate the relationships between the new catchment attributes and hydrologic signatures with correlation analysis and use the new attributes to predict hydrologic signatures with random forest models. We found that the average geologic age of catchments was a highly influential predictor of hydrologic signatures, especially for signatures describing baseflow magnitude in catchments, and had greater importance than existing attributes of the subsurface. In contrast, we found that the proportion of wetlands in catchments had limited influence on our hydrologic signature predictions. We recommend incorporating catchment geologic age into large-sample catchment datasets to improve predictions of baseflow and storage hydrologic signatures and processes across continental scales.
{"title":"New Predictors for Hydrologic Signatures: Wetlands and Geologic Age Across Continental Scales","authors":"Anne Holt, Hilary McMillan","doi":"10.1002/hyp.70080","DOIUrl":"https://doi.org/10.1002/hyp.70080","url":null,"abstract":"<p>In dry summer months, stream baseflow sourced from groundwater is essential to support aquatic ecosystems and anthropogenic water use. Hydrologic signatures, or metrics describing unique features of streamflow timeseries, are useful for quantifying and predicting these valuable baseflow and groundwater storage resources across continental scales. Hydrologic signatures can be predicted based on catchment attributes summarising climate and landscape and can be used to characterise baseflow and groundwater processes that cannot be directly measured. While past watershed-scale studies suggest that landscape attributes are important controls on baseflow and storage processes, recent regional-to-global scale modelling studies have instead found that landscape attributes have weaker relationships with hydrologic signatures of these processes than expected compared to climate attributes. In this study, we quantify two landscape attributes, average geologic age and the proportion of catchment area covered by wetlands. We investigate if incorporating these additional predictors into existing large-sample attribute datasets strengthens continental-scale, empirical relationships between landscape attributes and hydrologic signatures. We quantify 14 hydrologic signatures related to baseflow and groundwater processes in catchments across the contiguous United States, evaluate the relationships between the new catchment attributes and hydrologic signatures with correlation analysis and use the new attributes to predict hydrologic signatures with random forest models. We found that the average geologic age of catchments was a highly influential predictor of hydrologic signatures, especially for signatures describing baseflow magnitude in catchments, and had greater importance than existing attributes of the subsurface. In contrast, we found that the proportion of wetlands in catchments had limited influence on our hydrologic signature predictions. We recommend incorporating catchment geologic age into large-sample catchment datasets to improve predictions of baseflow and storage hydrologic signatures and processes across continental scales.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"39 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.70080","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143438773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}