Accurate voltage prediction for lithium and sodium-ion full-cell development

Yongxiu Chen , Yazid Lakhdar , Lin Chen , Brij Kishore , Jaehoon Choi , Ethan Williams , Dimitra Spathara , Roksana Jackowska , Emma Kendrick
{"title":"Accurate voltage prediction for lithium and sodium-ion full-cell development","authors":"Yongxiu Chen ,&nbsp;Yazid Lakhdar ,&nbsp;Lin Chen ,&nbsp;Brij Kishore ,&nbsp;Jaehoon Choi ,&nbsp;Ethan Williams ,&nbsp;Dimitra Spathara ,&nbsp;Roksana Jackowska ,&nbsp;Emma Kendrick","doi":"10.1016/j.nxener.2024.100166","DOIUrl":null,"url":null,"abstract":"<div><p>The cell balance, negative to positive (N:P) electrode ratio, and voltage limits determine the first cycle loss and reversible capacity at different rates and can influence degradation mechanisms and cycle life. This balance needs optimizing for each cell chemistry, electrode mass loading, and cell format, typically performed through empirical optimization. This work provides an accurate predictive tool for calculating full-cell voltages by decoupling the independent electrode potential under the same operating conditions. Full-cell NMC622//Graphite voltages are accurately predicted from low-rate half-cell voltage profiles (pseudo-open circuit voltages) and validated for different N:P ratios, rates, material types, and cell formats. The application of this methodology to several chemistries, including sodium-ion cell chemistry, high power (NMC622//MoNb<sub>12</sub>O<sub>33</sub>), and high energy (NMC920305//Graphite-SiO<sub>x</sub>), is also demonstrated. In addition, each electrode's key thermodynamic and kinetic parameters are extracted from the observed voltage and overpotentials for the negative and positive electrodes at different rates. Elucidating the rate-limiting electrodes and providing further cell balancing information to achieve high power, energy, and lifetime. The extracted parameters can be used in multi-scale models to optimise cell design and performance limitations further. This method promises new and quicker routes for cell optimization for different chemistries and formats.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"5 ","pages":"Article 100166"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000711/pdfft?md5=41d66b8a7c8c3e9f291fa986f6502cb7&pid=1-s2.0-S2949821X24000711-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24000711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The cell balance, negative to positive (N:P) electrode ratio, and voltage limits determine the first cycle loss and reversible capacity at different rates and can influence degradation mechanisms and cycle life. This balance needs optimizing for each cell chemistry, electrode mass loading, and cell format, typically performed through empirical optimization. This work provides an accurate predictive tool for calculating full-cell voltages by decoupling the independent electrode potential under the same operating conditions. Full-cell NMC622//Graphite voltages are accurately predicted from low-rate half-cell voltage profiles (pseudo-open circuit voltages) and validated for different N:P ratios, rates, material types, and cell formats. The application of this methodology to several chemistries, including sodium-ion cell chemistry, high power (NMC622//MoNb12O33), and high energy (NMC920305//Graphite-SiOx), is also demonstrated. In addition, each electrode's key thermodynamic and kinetic parameters are extracted from the observed voltage and overpotentials for the negative and positive electrodes at different rates. Elucidating the rate-limiting electrodes and providing further cell balancing information to achieve high power, energy, and lifetime. The extracted parameters can be used in multi-scale models to optimise cell design and performance limitations further. This method promises new and quicker routes for cell optimization for different chemistries and formats.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锂离子和钠离子全电池开发的精确电压预测
电池平衡、负极与正极(N:P)比率和电压限制决定了不同速率下的第一周期损耗和可逆容量,并可能影响降解机制和循环寿命。这种平衡需要针对每种电池化学成分、电极质量负载和电池形式进行优化,通常通过经验优化来实现。这项工作提供了一种精确的预测工具,在相同的工作条件下,通过解耦独立电极电位来计算全电池电压。根据低速率半电池电压曲线(伪开路电压)准确预测了 NMC622//石墨全电池电压,并针对不同的 N:P 比率、速率、材料类型和电池形式进行了验证。还演示了该方法在钠离子电池化学、高功率(NMC622//MoNbO)和高能量(NMC920305//Graphite-SiO)等几种化学中的应用。此外,还从观测到的不同速率下负极和正极的电压和过电位中提取了每个电极的关键热力学和动力学参数。阐明了限制速率的电极,并提供了进一步的细胞平衡信息,以实现高功率、高能量和高寿命。提取的参数可用于多尺度模型,进一步优化电池设计和性能限制。这种方法有望为不同化学成分和形式的电池优化提供更快的新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Potential uses of perovskite-based photovoltaics for hydrogen production: A pathway to sustainable energy solutions Experiments on a discretized 3D compound parabolic concentrator with a sensible heat storage Enhanced electrochemical performance of polycrystalline NCM811 cathode at high voltage through Te-doped LiNbO3 coating for lithium-ion batteries Lithium-ion batteries operating at ultrawide temperature range from −90 to +90 °C Influence of phenol-formaldehyde and melamine-formaldehyde resins on the gasification of high-pressure laminate waste materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1