Diagnosis and therapy of Alzheimer's disease: Light-driven heterogeneous redox processes

IF 15.9 1区 化学 Q1 CHEMISTRY, PHYSICAL Advances in Colloid and Interface Science Pub Date : 2024-07-23 DOI:10.1016/j.cis.2024.103253
Wenting Chen , Jiahui Li , Jiaxin Guo , Liang Li , Hao Wu
{"title":"Diagnosis and therapy of Alzheimer's disease: Light-driven heterogeneous redox processes","authors":"Wenting Chen ,&nbsp;Jiahui Li ,&nbsp;Jiaxin Guo ,&nbsp;Liang Li ,&nbsp;Hao Wu","doi":"10.1016/j.cis.2024.103253","DOIUrl":null,"url":null,"abstract":"<div><p>Light-driven heterogeneous processes are promising approaches for diagnosing and treating Alzheimer's disease (AD) by regulating its relevant biomolecules. The molecular understanding of the heterogeneous interface environment and its interaction with target biomolecules is important. This review critically appraises the advances in AD early diagnosis and therapy employing heterogeneous light-driven redox processes, encompassing photoelectrochemical (PEC) biosensing, photodynamic therapy, photothermal therapy, PEC therapy, and photoacoustic therapy. The design strategies for heterogeneous interfaces based on target biomolecules and applications are also compiled. Finally, the remaining challenges and future perspectives are discussed. The present review may promote the fundamental understanding of AD diagnosis and therapy and facilitate interdisciplinary studies at the junction of nanotechnology and bioscience.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"332 ","pages":"Article 103253"},"PeriodicalIF":15.9000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868624001763","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Light-driven heterogeneous processes are promising approaches for diagnosing and treating Alzheimer's disease (AD) by regulating its relevant biomolecules. The molecular understanding of the heterogeneous interface environment and its interaction with target biomolecules is important. This review critically appraises the advances in AD early diagnosis and therapy employing heterogeneous light-driven redox processes, encompassing photoelectrochemical (PEC) biosensing, photodynamic therapy, photothermal therapy, PEC therapy, and photoacoustic therapy. The design strategies for heterogeneous interfaces based on target biomolecules and applications are also compiled. Finally, the remaining challenges and future perspectives are discussed. The present review may promote the fundamental understanding of AD diagnosis and therapy and facilitate interdisciplinary studies at the junction of nanotechnology and bioscience.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阿尔茨海默病的诊断和治疗:光驱动的异质氧化还原过程
光驱动的异质过程是通过调节阿尔茨海默病(AD)的相关生物大分子来诊断和治疗该病的有前途的方法。从分子角度了解异质界面环境及其与目标生物分子的相互作用非常重要。本综述对采用异质光驱动氧化还原过程进行早期诊断和治疗的进展进行了严格评估,包括光电化学(PEC)生物传感、光动力疗法、光热疗法、PEC疗法和光声疗法。此外,还汇编了基于目标生物分子和应用的异质界面设计策略。最后,还讨论了余下的挑战和未来展望。本综述可促进对注意力缺失症诊断和治疗的基本理解,并推动纳米技术与生物科学交界处的跨学科研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
28.50
自引率
2.60%
发文量
175
审稿时长
31 days
期刊介绍: "Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology. The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas. Typically, the articles published in this journal are written by recognized experts in the field.
期刊最新文献
Genetically modified organoids for tissue engineering and regenerative medicine Recent achievements and performance of nanomaterials in microwave absorption and electromagnetic shielding Viscoelastic properties of colloidal systems with attractive solid particles at low concentration: A review, new results and interpretations Biohybrid nano-platforms manifesting effective cancer therapy: Fabrication, characterization, challenges and clinical perspective Cellulose-based functional textiles through surface nano-engineering with MXene and MXene-based composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1