Conjugated Enhanced Polyimide Enables High‐Capacity Ammonium Ion Storage

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-07-26 DOI:10.1002/adfm.202407313
Fuyao Huang, Wenkai Zhao, Yujia Guo, Yongqi Mi, Sehrish Gull, Guankui Long, Pengcheng Du
{"title":"Conjugated Enhanced Polyimide Enables High‐Capacity Ammonium Ion Storage","authors":"Fuyao Huang, Wenkai Zhao, Yujia Guo, Yongqi Mi, Sehrish Gull, Guankui Long, Pengcheng Du","doi":"10.1002/adfm.202407313","DOIUrl":null,"url":null,"abstract":"Aqueous ammonium ion batteries (AIBs) have emerged as a promising next‐generation rechargeable battery due to their safety, sustainability, abundant resources, and superior electrochemical performance. However, organic anode materials, particularly polyimide anode materials, suffer from low specific capacity caused by limited active sites. Herein, the study has developed a micro‐granular‐structured π‐conjugated enhanced polyimide (PTPD) as the anode material for AIBs. The large π‐conjugated enhanced structure enables long‐range electron delocalization, decreased bandgap, and reduced spatial steric hindrance, resulting in increased active sites capable of storing NH<jats:sub>4</jats:sub><jats:sup>+</jats:sup> ions. PTPD exhibits reversible oxidation and reduction reaction in (NH<jats:sub>4</jats:sub>)<jats:sub>2</jats:sub>SO<jats:sub>4</jats:sub> solution, delivering a high specific capacity of 206.67 mAh g<jats:sup>−1</jats:sup> at a current density of 0.5 A g<jats:sup>−1</jats:sup>, exceptional rate capability, and excellent cycling stability with a capacity retention of 74.28% after 2500 cycles at a current density of 10 A g<jats:sup>−1</jats:sup>. Furthermore, theoretical simulations and materials analysis demonstrate that PTPD undergoes enol‐keto transformation of carbonyl groups, effectively capturing NH<jats:sub>4</jats:sub><jats:sup>+</jats:sup> to store charges. This study provides an effective strategy for designing polymer‐based AIBs anodes with high specific capacity and cycling stability.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202407313","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous ammonium ion batteries (AIBs) have emerged as a promising next‐generation rechargeable battery due to their safety, sustainability, abundant resources, and superior electrochemical performance. However, organic anode materials, particularly polyimide anode materials, suffer from low specific capacity caused by limited active sites. Herein, the study has developed a micro‐granular‐structured π‐conjugated enhanced polyimide (PTPD) as the anode material for AIBs. The large π‐conjugated enhanced structure enables long‐range electron delocalization, decreased bandgap, and reduced spatial steric hindrance, resulting in increased active sites capable of storing NH4+ ions. PTPD exhibits reversible oxidation and reduction reaction in (NH4)2SO4 solution, delivering a high specific capacity of 206.67 mAh g−1 at a current density of 0.5 A g−1, exceptional rate capability, and excellent cycling stability with a capacity retention of 74.28% after 2500 cycles at a current density of 10 A g−1. Furthermore, theoretical simulations and materials analysis demonstrate that PTPD undergoes enol‐keto transformation of carbonyl groups, effectively capturing NH4+ to store charges. This study provides an effective strategy for designing polymer‐based AIBs anodes with high specific capacity and cycling stability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
共轭增强聚酰亚胺实现高容量铵离子存储
水铵离子电池(AIBs)因其安全性、可持续性、丰富的资源和优异的电化学性能,已成为一种前景广阔的下一代充电电池。然而,有机负极材料,尤其是聚酰亚胺负极材料,因活性位点有限而导致比容量较低。本研究开发了一种微颗粒结构的π共轭增强聚酰亚胺(PTPD)作为 AIB 的阳极材料。大型π-共轭增强结构可实现长程电子析出、降低带隙并减少空间立体阻碍,从而增加了能够存储 NH4+ 离子的活性位点。PTPD 在 (NH4)2SO4 溶液中表现出可逆的氧化和还原反应,在 0.5 A g-1 的电流密度下可提供 206.67 mAh g-1 的高比容量、卓越的速率能力和出色的循环稳定性,在 10 A g-1 的电流密度下循环 2500 次后容量保持率为 74.28%。此外,理论模拟和材料分析表明,PTPD 会发生羰基的烯醇-酮基转化,从而有效捕获 NH4+ 以存储电荷。这项研究为设计具有高比容量和循环稳定性的聚合物基 AIBs 阳极提供了一种有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Achieving Eu2+ Luminescence at Trivalent Lattice Site in Rb3Y(PO4)2:Eu toward Multicolor Emissions by Carbon and Hydrogen Coreduction Tailoring Nanocrystalline/Amorphous Interfaces to Enhance Oxygen Evolution Reaction Performance for FeNi-Based Alloy Fibers Laser Patterning for 2D Lateral and Vertical VS2/MoS2 Metal/Semiconducting Heterostructures Construction of Through-Space Charge-Transfer Nanoparticles for Facilely Realizing High-Performance NIR-II Cancer Phototheranostics A Supercapacitor Driven by MXene Nanofluid Gel Electrolyte Induced the Synergistic High Ionic Migration Rate and Excellent Mechanical Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1