Engineering Metal Electron Spin Polarization to Regulate p‐Band Center of Se for Enhanced Sodium‐Ion Storage

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-07-26 DOI:10.1002/adfm.202405642
Dandan Wang, Yunfeng Chao, Kaiyang Guo, Zhuosen Wang, Mingxing Yang, Jianhua Zhu, Xinwei Cui, Qun Xu
{"title":"Engineering Metal Electron Spin Polarization to Regulate p‐Band Center of Se for Enhanced Sodium‐Ion Storage","authors":"Dandan Wang, Yunfeng Chao, Kaiyang Guo, Zhuosen Wang, Mingxing Yang, Jianhua Zhu, Xinwei Cui, Qun Xu","doi":"10.1002/adfm.202405642","DOIUrl":null,"url":null,"abstract":"Sluggish ion diffusion of large sodium ions is one of the main drawbacks challenging the development of metal selenides‐based anode materials for sodium‐ion batteries (SIBs). A spin‐state regulating strategy is first proposed in this work to lift the p‐band center (ɛ<jats:sub>p</jats:sub>) of Se for a fast Na<jats:sup>+</jats:sup> transfer kinetic in (Co,Cu)Se<jats:sub>2</jats:sub>. By utilizing the electron transfer from Cu to Co, the π‐symmetry t<jats:sub>2g</jats:sub> of Co is fully occupied to decrease the spin polarization. The resultant electron repulsion between Co and Se weakens Co–Se bond to lift the ɛ<jats:sub>p</jats:sub> of Se. The enhanced sodium adsorption energy effectively accelerates the ion transfer at the active material–electrolyte interface. As a result, the (Co,Cu)Se<jats:sub>2</jats:sub>/NC electrode exhibits an superior sodium storage performance with a capacity of 445 mAh g<jats:sup>−1</jats:sup> at 0.2 A g<jats:sup>−1</jats:sup>, 312 mAh g<jats:sup>−1</jats:sup> at 50 A g<jats:sup>−1</jats:sup>, and 363 mAh g<jats:sup>−1</jats:sup> after 10 000 cycles at 10.0 A g<jats:sup>−1</jats:sup>. The insight into the working mechanism of regulating spin‐state of metals to lift the p‐band center of Se can provide guidelines for the development of both metal selenides‐based anode material and high‐performance SIBs.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202405642","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sluggish ion diffusion of large sodium ions is one of the main drawbacks challenging the development of metal selenides‐based anode materials for sodium‐ion batteries (SIBs). A spin‐state regulating strategy is first proposed in this work to lift the p‐band center (ɛp) of Se for a fast Na+ transfer kinetic in (Co,Cu)Se2. By utilizing the electron transfer from Cu to Co, the π‐symmetry t2g of Co is fully occupied to decrease the spin polarization. The resultant electron repulsion between Co and Se weakens Co–Se bond to lift the ɛp of Se. The enhanced sodium adsorption energy effectively accelerates the ion transfer at the active material–electrolyte interface. As a result, the (Co,Cu)Se2/NC electrode exhibits an superior sodium storage performance with a capacity of 445 mAh g−1 at 0.2 A g−1, 312 mAh g−1 at 50 A g−1, and 363 mAh g−1 after 10 000 cycles at 10.0 A g−1. The insight into the working mechanism of regulating spin‐state of metals to lift the p‐band center of Se can provide guidelines for the development of both metal selenides‐based anode material and high‐performance SIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用金属电子自旋极化工程调节硒的 p 波段中心以增强钠离子存储能力
大钠离子扩散缓慢是钠离子电池 (SIB) 金属硒化物阳极材料开发过程中面临的主要挑战之一。本研究首次提出了一种自旋态调节策略,以提升 Se 的 p 波段中心(ɛp),从而在(Co,Cu)Se2 中实现快速的 Na+ 转移动力学。通过利用从 Cu 到 Co 的电子转移,Co 的 π 对称 t2g 被完全占据,从而降低了自旋极化。Co 和 Se 之间由此产生的电子排斥削弱了 Co-Se 键,从而提高了 Se 的ɛp。钠吸附能的增强有效地加速了活性材料-电解质界面上的离子转移。因此,(Co,Cu)Se2/NC 电极显示出卓越的钠存储性能,在 0.2 A g-1 时容量为 445 mAh g-1,在 50 A g-1 时容量为 312 mAh g-1,在 10.0 A g-1 时循环 10,000 次后容量为 363 mAh g-1。对调节金属自旋态以提升硒的 p 带中心的工作机制的深入了解,可为开发基于金属硒化物的正极材料和高性能 SIB 提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Achieving Eu2+ Luminescence at Trivalent Lattice Site in Rb3Y(PO4)2:Eu toward Multicolor Emissions by Carbon and Hydrogen Coreduction Tailoring Nanocrystalline/Amorphous Interfaces to Enhance Oxygen Evolution Reaction Performance for FeNi-Based Alloy Fibers Laser Patterning for 2D Lateral and Vertical VS2/MoS2 Metal/Semiconducting Heterostructures Construction of Through-Space Charge-Transfer Nanoparticles for Facilely Realizing High-Performance NIR-II Cancer Phototheranostics A Supercapacitor Driven by MXene Nanofluid Gel Electrolyte Induced the Synergistic High Ionic Migration Rate and Excellent Mechanical Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1