Core–Shell Co‐CoxP Nanoparticle‐Embedded N‐Doped Carbon Nanowhiskers Hollow Sphere for Efficient Oxygen Evolution Electrocatalysis

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-07-26 DOI:10.1002/adfm.202409390
Wei Zhu, Wenhui Hu, Ying Wei, Yi Zhang, Kunming Pan, Songtao Zhang, Xinxin Hang, Mingbo Zheng, Huan Pang
{"title":"Core–Shell Co‐CoxP Nanoparticle‐Embedded N‐Doped Carbon Nanowhiskers Hollow Sphere for Efficient Oxygen Evolution Electrocatalysis","authors":"Wei Zhu, Wenhui Hu, Ying Wei, Yi Zhang, Kunming Pan, Songtao Zhang, Xinxin Hang, Mingbo Zheng, Huan Pang","doi":"10.1002/adfm.202409390","DOIUrl":null,"url":null,"abstract":"The development of efficient oxygen evolution reaction (OER) electrocatalysts is critical to overcome the efficiency bottleneck in hydrogen generation via water electrolysis. Hollow nanostructured materials have emerged as a hot topic for electrocatalysis research because of their advantages, including abundant active sites, a large contact area between the catalyst and the electrolyte, and a short transmission path. As highly efficient and stable OER electrocatalysts, cobalt‐based nanostructured materials have attracted more and more attention. In this work, cobalt metal/cobalt phosphides/nitrogen‐doped carbon composites (Co‐Co<jats:sub>x</jats:sub>P/NC) with a hierarchical hollow structure are designed by using hollow ZIF‐67 microspheres as precursors. By coating ZIF‐8 on the surface of hollow ZIF‐67 microspheres and further carbonizing, carbon nanowhiskers are successfully formed on the surface of hollow carbon spheres under the catalytic effect of Co nanoparticles at a high temperature. In the subsequent phosphating process, solid Co nanocrystalline particles are transformed into core–shell CoP and Co<jats:sub>2</jats:sub>P nanoparticles on account of the Kirkendall effect. Through the optimization of the microstructure of the material and the synergistic effect of transition metal, transition metal phosphide, and nitrogen doping, the overpotential of the optimal material is only 287 mV at 10 mA cm<jats:sup>−2</jats:sup> current density in 1 <jats:sc>m</jats:sc> KOH.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202409390","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of efficient oxygen evolution reaction (OER) electrocatalysts is critical to overcome the efficiency bottleneck in hydrogen generation via water electrolysis. Hollow nanostructured materials have emerged as a hot topic for electrocatalysis research because of their advantages, including abundant active sites, a large contact area between the catalyst and the electrolyte, and a short transmission path. As highly efficient and stable OER electrocatalysts, cobalt‐based nanostructured materials have attracted more and more attention. In this work, cobalt metal/cobalt phosphides/nitrogen‐doped carbon composites (Co‐CoxP/NC) with a hierarchical hollow structure are designed by using hollow ZIF‐67 microspheres as precursors. By coating ZIF‐8 on the surface of hollow ZIF‐67 microspheres and further carbonizing, carbon nanowhiskers are successfully formed on the surface of hollow carbon spheres under the catalytic effect of Co nanoparticles at a high temperature. In the subsequent phosphating process, solid Co nanocrystalline particles are transformed into core–shell CoP and Co2P nanoparticles on account of the Kirkendall effect. Through the optimization of the microstructure of the material and the synergistic effect of transition metal, transition metal phosphide, and nitrogen doping, the overpotential of the optimal material is only 287 mV at 10 mA cm−2 current density in 1 m KOH.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高效氧进化电催化的核壳 Co-CoxP 纳米粒子嵌入 N 掺杂碳纳米须空心球
开发高效的氧进化反应(OER)电催化剂对于克服电解水制氢的效率瓶颈至关重要。中空纳米结构材料具有活性位点多、催化剂与电解质接触面积大、传输路径短等优点,已成为电催化研究的热点。作为高效稳定的 OER 电催化剂,钴基纳米结构材料受到越来越多的关注。本研究以空心 ZIF-67 微球为前驱体,设计了具有分层空心结构的金属钴/磷化钴/掺氮碳复合材料(Co-CoxP/NC)。通过在空心 ZIF-67 微球表面涂覆 ZIF-8 并进一步碳化,在 Co 纳米粒子的催化作用下,空心碳球表面在高温下成功形成了碳纳米须。在随后的磷化过程中,固态 Co 纳米晶颗粒在 Kirkendall 效应的作用下转变为核壳 CoP 和 Co2P 纳米颗粒。通过优化材料的微观结构以及过渡金属、过渡金属磷化物和氮掺杂的协同效应,最佳材料在 1 m KOH 中 10 mA cm-2 电流密度下的过电位仅为 287 mV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Achieving Eu2+ Luminescence at Trivalent Lattice Site in Rb3Y(PO4)2:Eu toward Multicolor Emissions by Carbon and Hydrogen Coreduction Tailoring Nanocrystalline/Amorphous Interfaces to Enhance Oxygen Evolution Reaction Performance for FeNi-Based Alloy Fibers Laser Patterning for 2D Lateral and Vertical VS2/MoS2 Metal/Semiconducting Heterostructures Construction of Through-Space Charge-Transfer Nanoparticles for Facilely Realizing High-Performance NIR-II Cancer Phototheranostics A Supercapacitor Driven by MXene Nanofluid Gel Electrolyte Induced the Synergistic High Ionic Migration Rate and Excellent Mechanical Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1