{"title":"Fabrication of hydrophobic photothermal phase change microcapsules for efficient anti-/deicing","authors":"Mingtai Hou, Zeyi Jiang, Xinru Zhang, Wen Sun, Fuqiang Chu, Nien-Chu Lai","doi":"10.1016/j.mtchem.2024.102205","DOIUrl":null,"url":null,"abstract":"Photothermal hydrophobic coatings are considered as a promising passive anti-/deicing strategy, but their expensive manufacturing process has hindered their large-scale commercial application. Herein, we have constructed a double-shell n-Eicosane@TiO@CuS phase change microcapsules in a facile approach. The microcapsule exhibits latent heat of 127.8 J/g, and the fluctuation of phase transition temperature and enthalpy in 200 DSC cycles is negligible. The microcapsule shows a strong absorption in the whole solar spectrum, owing to the coupling effect of the flower-like superstructure and localized surface plasmon resonance effect of CuS shell. Liquid marbles are spontaneously formed owing to the large surface roughness and superhydrophobic character of the microcapsule. The microcapsule-based coating surface reveals efficient anti-/deicing performance under low-temperature condition. Our work not only provides a novel approach for the design of high-performance microcapsules but also offers an effective strategy for photothermal anti-/deicing applications.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"1 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.102205","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photothermal hydrophobic coatings are considered as a promising passive anti-/deicing strategy, but their expensive manufacturing process has hindered their large-scale commercial application. Herein, we have constructed a double-shell n-Eicosane@TiO@CuS phase change microcapsules in a facile approach. The microcapsule exhibits latent heat of 127.8 J/g, and the fluctuation of phase transition temperature and enthalpy in 200 DSC cycles is negligible. The microcapsule shows a strong absorption in the whole solar spectrum, owing to the coupling effect of the flower-like superstructure and localized surface plasmon resonance effect of CuS shell. Liquid marbles are spontaneously formed owing to the large surface roughness and superhydrophobic character of the microcapsule. The microcapsule-based coating surface reveals efficient anti-/deicing performance under low-temperature condition. Our work not only provides a novel approach for the design of high-performance microcapsules but also offers an effective strategy for photothermal anti-/deicing applications.
期刊介绍:
Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry.
This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.