R. Caitano, A. J. Ramirez-Pastor, E. E. Vogel, G. Saravia
{"title":"Competition analysis of grain flow versus clogging by means of information theory","authors":"R. Caitano, A. J. Ramirez-Pastor, E. E. Vogel, G. Saravia","doi":"10.1007/s10035-024-01448-w","DOIUrl":null,"url":null,"abstract":"<p>The different flow regimes in a two-dimensional silo with a vibrated base are studied in terms of the usual statistical techniques and information theory. The passage of granular material through the mouth of the silo is analyzed by real-time analysis of images captured by a standard video camera. The brightness of these images is measured and recorded at very small time intervals (100 frames per second). The experiment is repeated for different values of the vibration intensity. Data recognizer wlzip directly treats the resulting <i>b</i>(<i>t</i>) files (brightness time series) based on data compressor techniques, yielding the information content measured by the mutability <span>\\(\\mu\\)</span> function.<span>\\(\\mu\\)</span> has not previously been considered as part of the conventional treatment of flow in granular media. The results obtained here clearly demonstrate the usefulness of mutability as a tool for distinguishing between different flowing regimes directly from the brightness sequence, with no manipulation of the series. This shows that information theory techniques can provide a complementary description of the discharge of granular materials and its control through data compression algorithms.</p>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01448-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The different flow regimes in a two-dimensional silo with a vibrated base are studied in terms of the usual statistical techniques and information theory. The passage of granular material through the mouth of the silo is analyzed by real-time analysis of images captured by a standard video camera. The brightness of these images is measured and recorded at very small time intervals (100 frames per second). The experiment is repeated for different values of the vibration intensity. Data recognizer wlzip directly treats the resulting b(t) files (brightness time series) based on data compressor techniques, yielding the information content measured by the mutability \(\mu\) function.\(\mu\) has not previously been considered as part of the conventional treatment of flow in granular media. The results obtained here clearly demonstrate the usefulness of mutability as a tool for distinguishing between different flowing regimes directly from the brightness sequence, with no manipulation of the series. This shows that information theory techniques can provide a complementary description of the discharge of granular materials and its control through data compression algorithms.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.