Modeling on in vivo disposition and cellular transportation of RNA lipid nanoparticles via quantum mechanics/physiologically-based pharmacokinetic approaches
Wei Wang , Shiwei Deng , Jinzhong Lin , Defang Ouyang
{"title":"Modeling on in vivo disposition and cellular transportation of RNA lipid nanoparticles via quantum mechanics/physiologically-based pharmacokinetic approaches","authors":"Wei Wang , Shiwei Deng , Jinzhong Lin , Defang Ouyang","doi":"10.1016/j.apsb.2024.06.011","DOIUrl":null,"url":null,"abstract":"<div><div>The lipid nanoparticle (LNP) has been so far proven as a strongly effective delivery system for mRNA and siRNA. However, the mechanisms of LNP's distribution, metabolism, and elimination are complicated, while the transportation and pharmacokinetics (PK) of LNP are just sparsely investigated and simply described. This study aimed to build a model for the transportation of RNA-LNP in Hela cells, rats, mice, and humans by physiologically based pharmacokinetic (PBPK) and quantum mechanics (QM) models with integrated multi-source data. LNPs with different ionizable lipids, particle sizes, and doses were modeled and compared by recognizing their critical parameters dominating PK. Some interesting results were found by the models. For example, the metabolism of ionizable lipids was first limited by the LNP disassembly rate instead of the hydrolyzation of ionizable lipids; the ability of RNA release from endosomes for three ionizable lipids was quantitively derived and can predict the probability of RNA release. Moreover, the biodegradability of three ionizable lipids was estimated by the QM method and the is generally consistent with the result of PBPK result. In summary, the transportation model of RNA LNP among various species for the first time was successfully constructed. Various <em>in vitro</em> and <em>in vivo</em> pieces of evidence were integrated through QM/PBPK multi-level modeling. The resulting new understandings are related to biodegradability, safety, and RNA release ability which are highly concerned issues of the formulation. This would benefit the design and research of RNA-LNP in the future.</div></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"14 10","pages":"Pages 4591-4607"},"PeriodicalIF":14.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica Sinica. B","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211383524002429","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The lipid nanoparticle (LNP) has been so far proven as a strongly effective delivery system for mRNA and siRNA. However, the mechanisms of LNP's distribution, metabolism, and elimination are complicated, while the transportation and pharmacokinetics (PK) of LNP are just sparsely investigated and simply described. This study aimed to build a model for the transportation of RNA-LNP in Hela cells, rats, mice, and humans by physiologically based pharmacokinetic (PBPK) and quantum mechanics (QM) models with integrated multi-source data. LNPs with different ionizable lipids, particle sizes, and doses were modeled and compared by recognizing their critical parameters dominating PK. Some interesting results were found by the models. For example, the metabolism of ionizable lipids was first limited by the LNP disassembly rate instead of the hydrolyzation of ionizable lipids; the ability of RNA release from endosomes for three ionizable lipids was quantitively derived and can predict the probability of RNA release. Moreover, the biodegradability of three ionizable lipids was estimated by the QM method and the is generally consistent with the result of PBPK result. In summary, the transportation model of RNA LNP among various species for the first time was successfully constructed. Various in vitro and in vivo pieces of evidence were integrated through QM/PBPK multi-level modeling. The resulting new understandings are related to biodegradability, safety, and RNA release ability which are highly concerned issues of the formulation. This would benefit the design and research of RNA-LNP in the future.
Acta Pharmaceutica Sinica. BPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
22.40
自引率
5.50%
发文量
1051
审稿时长
19 weeks
期刊介绍:
The Journal of the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association oversees the peer review process for Acta Pharmaceutica Sinica. B (APSB).
Published monthly in English, APSB is dedicated to disseminating significant original research articles, rapid communications, and high-quality reviews that highlight recent advances across various pharmaceutical sciences domains. These encompass pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis, and pharmacokinetics.
A part of the Acta Pharmaceutica Sinica series, established in 1953 and indexed in prominent databases like Chemical Abstracts, Index Medicus, SciFinder Scholar, Biological Abstracts, International Pharmaceutical Abstracts, Cambridge Scientific Abstracts, and Current Bibliography on Science and Technology, APSB is sponsored by the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association. Its production and hosting are facilitated by Elsevier B.V. This collaborative effort ensures APSB's commitment to delivering valuable contributions to the pharmaceutical sciences community.