Positive impact of surface defects on Maxwell's displacement current-driven nano-LEDs: The application of TENG technology

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2024-07-23 DOI:10.1016/j.nanoen.2024.110044
{"title":"Positive impact of surface defects on Maxwell's displacement current-driven nano-LEDs: The application of TENG technology","authors":"","doi":"10.1016/j.nanoen.2024.110044","DOIUrl":null,"url":null,"abstract":"<div><p>As the core component of a nanopixel light-emitting display, the GaN-based nanoscale light-emitting diode (nLED) faces the problem of low electroluminescence efficiency resulting from the introduction of surface defects when its lateral size is reduced to the nanometer scale. Thus, reducing the surface defect density is an important direction in nLED-related research. This study, with the triboelectric nanogenerator-driven LED as its inspiration, reveals that surface defects have a positive impact on the performance of nLEDs driven by Maxwell’s displacement current, and we call the related driving mode the noncarrier injection mode. Through finite element simulations, we studied the dynamic variations of the carrier concentration, the energy band, and the light emission rate to analyze the impact of the behavior of surface defect excitation on device performance. We found that surface defects can act as electron pumps under the combined effect of the reverse electric field and the built-in electric field and can generate carriers through surface defect excitation to increase the intensity of noncarrier injection luminescence, which is completely different from the traditional understanding of surface defects. In addition, we propose a tapered structure to further increase the light emission rate by regulating the behaviors of radiation recombination and surface defect excitation. The results of this work open a new perspective on the impacts of surface defects on nLEDs and provide significant information for additional applications of Maxwell's displacement current.</p></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524007948","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As the core component of a nanopixel light-emitting display, the GaN-based nanoscale light-emitting diode (nLED) faces the problem of low electroluminescence efficiency resulting from the introduction of surface defects when its lateral size is reduced to the nanometer scale. Thus, reducing the surface defect density is an important direction in nLED-related research. This study, with the triboelectric nanogenerator-driven LED as its inspiration, reveals that surface defects have a positive impact on the performance of nLEDs driven by Maxwell’s displacement current, and we call the related driving mode the noncarrier injection mode. Through finite element simulations, we studied the dynamic variations of the carrier concentration, the energy band, and the light emission rate to analyze the impact of the behavior of surface defect excitation on device performance. We found that surface defects can act as electron pumps under the combined effect of the reverse electric field and the built-in electric field and can generate carriers through surface defect excitation to increase the intensity of noncarrier injection luminescence, which is completely different from the traditional understanding of surface defects. In addition, we propose a tapered structure to further increase the light emission rate by regulating the behaviors of radiation recombination and surface defect excitation. The results of this work open a new perspective on the impacts of surface defects on nLEDs and provide significant information for additional applications of Maxwell's displacement current.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表面缺陷对麦克斯韦位移电流驱动纳米 LED 的积极影响:TENG 技术的应用
作为纳米像素发光显示器的核心部件,氮化镓基纳米级发光二极管(nLED)面临着当其横向尺寸缩小到纳米级时,由于表面缺陷的引入而导致电致发光效率低下的问题。因此,降低表面缺陷密度是 nLED 相关研究的一个重要方向。本研究以三电纳米发电机驱动的 LED 为灵感来源,揭示了表面缺陷对麦克斯韦位移电流驱动的 nLED 性能的积极影响,并将相关驱动模式称为非载流子注入模式。通过有限元模拟,我们研究了载流子浓度、能带和发光率的动态变化,分析了表面缺陷激发行为对器件性能的影响。我们发现,在反向电场和内置电场的共同作用下,表面缺陷可以充当电子泵,通过表面缺陷激发产生载流子,从而提高非载流子注入发光的强度,这与人们对表面缺陷的传统理解完全不同。此外,我们还提出了一种锥形结构,通过调节辐射重组和表面缺陷激发的行为来进一步提高发光率。这项工作的结果开辟了表面缺陷对 nLED 影响的新视角,并为麦克斯韦位移电流的其他应用提供了重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
Robust water/seawater-electrolysis hydrogen production at industrial-scale current densities by modulating built-in-outer electric field of catalytic substance Corrigendum to “Unlocking the potential of antisolvent-free perovskite solar cells: Modulating crystallization and intermediates through a binary volatile additive strategy” [Nano Energy 124 (2024) 109487] Multifunctional wearable triboelectric nanogenerators prepared by combined crystallization and diffusion method: High-output, breathable, antimicrobial, and Janus-wettability for smart control and self-powered biosensing Highly sensitive self-powered biosensor for real-time monitoring and early warning of human health and motion state Flame-retardant textile based triboelectric nanogenerators for energy harvesting and high-temperature sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1