{"title":"Hybrid coati–grey wolf optimization with application to tuning linear quadratic regulator controller of active suspension systems","authors":"Hasan Başak","doi":"10.1016/j.jestch.2024.101765","DOIUrl":null,"url":null,"abstract":"<div><p>Vehicle suspension systems have become increasingly crucial for both driving safety and comfort. Active suspension systems can dynamically adjust suspension characteristics in real-time by introducing force into the system. Designing a controller for the real-time adjustment of the control force in active suspension systems is essential to meet challenging control objectives, including body acceleration, suspension deflection, and tire deflection. This article proposes a hybrid optimization approach named Coati–Grey Wolf Optimization (COAGWO), which combines the strengths of the coati optimization algorithm and grey wolf optimization to tune the gains of linear quadratic control applied to vehicle suspension systems. The COAGWO algorithm incorporates a unique strategy inspired by the Coati Optimization Algorithm, allowing wolves to climb trees. This enhancement significantly improves the wolves’ ability to explore the global search space and reduces the likelihood of being trapped in local optima. Initially, we conduct extensive experiments using a suite of challenging optimization problems from the CEC2019 benchmark to evaluate the effectiveness of the COAGWO algorithm. The effectiveness of COAGWO is compared against several state-of-the-art algorithms, including grey wolf, coati, aquila-grey wolf, whale, reptile search, tunicate swarm, and seagull optimization algorithms. The experimental results demonstrate that COAGWO consistently outperforms these algorithms in terms of solution quality and convergence speed. For the optimal weight selection problem of linear quadratic control applied to the control of vehicle suspension systems, the excellent performance of the proposed method is illustrated through comparative simulation studies under various road disturbance conditions. The results indicate that the COAGWO algorithm achieves a more efficient active suspension system compared to competitor algorithms by reducing the overall acceleration of the driver’s body, thereby enhancing ride comfort.</p></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"56 ","pages":"Article 101765"},"PeriodicalIF":5.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215098624001514/pdfft?md5=86d02a5aabd1c8a600b3e3e018ae9114&pid=1-s2.0-S2215098624001514-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Science and Technology-An International Journal-Jestech","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215098624001514","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Vehicle suspension systems have become increasingly crucial for both driving safety and comfort. Active suspension systems can dynamically adjust suspension characteristics in real-time by introducing force into the system. Designing a controller for the real-time adjustment of the control force in active suspension systems is essential to meet challenging control objectives, including body acceleration, suspension deflection, and tire deflection. This article proposes a hybrid optimization approach named Coati–Grey Wolf Optimization (COAGWO), which combines the strengths of the coati optimization algorithm and grey wolf optimization to tune the gains of linear quadratic control applied to vehicle suspension systems. The COAGWO algorithm incorporates a unique strategy inspired by the Coati Optimization Algorithm, allowing wolves to climb trees. This enhancement significantly improves the wolves’ ability to explore the global search space and reduces the likelihood of being trapped in local optima. Initially, we conduct extensive experiments using a suite of challenging optimization problems from the CEC2019 benchmark to evaluate the effectiveness of the COAGWO algorithm. The effectiveness of COAGWO is compared against several state-of-the-art algorithms, including grey wolf, coati, aquila-grey wolf, whale, reptile search, tunicate swarm, and seagull optimization algorithms. The experimental results demonstrate that COAGWO consistently outperforms these algorithms in terms of solution quality and convergence speed. For the optimal weight selection problem of linear quadratic control applied to the control of vehicle suspension systems, the excellent performance of the proposed method is illustrated through comparative simulation studies under various road disturbance conditions. The results indicate that the COAGWO algorithm achieves a more efficient active suspension system compared to competitor algorithms by reducing the overall acceleration of the driver’s body, thereby enhancing ride comfort.
期刊介绍:
Engineering Science and Technology, an International Journal (JESTECH) (formerly Technology), a peer-reviewed quarterly engineering journal, publishes both theoretical and experimental high quality papers of permanent interest, not previously published in journals, in the field of engineering and applied science which aims to promote the theory and practice of technology and engineering. In addition to peer-reviewed original research papers, the Editorial Board welcomes original research reports, state-of-the-art reviews and communications in the broadly defined field of engineering science and technology.
The scope of JESTECH includes a wide spectrum of subjects including:
-Electrical/Electronics and Computer Engineering (Biomedical Engineering and Instrumentation; Coding, Cryptography, and Information Protection; Communications, Networks, Mobile Computing and Distributed Systems; Compilers and Operating Systems; Computer Architecture, Parallel Processing, and Dependability; Computer Vision and Robotics; Control Theory; Electromagnetic Waves, Microwave Techniques and Antennas; Embedded Systems; Integrated Circuits, VLSI Design, Testing, and CAD; Microelectromechanical Systems; Microelectronics, and Electronic Devices and Circuits; Power, Energy and Energy Conversion Systems; Signal, Image, and Speech Processing)
-Mechanical and Civil Engineering (Automotive Technologies; Biomechanics; Construction Materials; Design and Manufacturing; Dynamics and Control; Energy Generation, Utilization, Conversion, and Storage; Fluid Mechanics and Hydraulics; Heat and Mass Transfer; Micro-Nano Sciences; Renewable and Sustainable Energy Technologies; Robotics and Mechatronics; Solid Mechanics and Structure; Thermal Sciences)
-Metallurgical and Materials Engineering (Advanced Materials Science; Biomaterials; Ceramic and Inorgnanic Materials; Electronic-Magnetic Materials; Energy and Environment; Materials Characterizastion; Metallurgy; Polymers and Nanocomposites)