Pub Date : 2024-11-17DOI: 10.1016/j.jestch.2024.101908
Zafar Hayat Khan , Oluwole Daniel Makinde , Alexander Trounev , Waqar Ahmed Khan , Rashid Ahmad
This study investigates the role of time-fractional derivatives in the entropy analysis of mixed convection in a reacting nanofluid within a vertical permeable channel saturated with a Darcy-Forchheimer porous medium. This is crucial for enhancing heat and mass transfer, incorporating memory effects, and addressing delayed responses in various engineering applications. Key phenomena such as thermophoresis, porous medium permeability, buoyancy forces, chemical reactions, viscous dissipation, Brownian motion, and velocity slip are considered. The study presents an advanced computational methodology that integrates the Euler wavelets collocation method with an implicit difference scheme to discretize the system of time-fractional partial differential equations. This advanced numerical framework is thoroughly validated, ensuring high accuracy in capturing the complex interactions between fluids and solids. The study reveals that a 20% increase in the Eckert number leads to a 15% rise in entropy generation, signifying greater energy dissipation within the system. Likewise, higher Reynolds numbers contribute to increased entropy generation, emphasizing the flow’s dissipative nature. On the other hand, a 10% increase in pressure gradient and Forchheimer parameters results in a 12% reduction in entropy generation, demonstrating their ability to control the system’s irreversibility. These findings pave the way for more optimized and energy-efficient designs in engineering systems involving porous media.
{"title":"Entropy generation and heat transfer in Time-Fractional mixed convection of nanofluids in Darcy-Forchheimer porous channel","authors":"Zafar Hayat Khan , Oluwole Daniel Makinde , Alexander Trounev , Waqar Ahmed Khan , Rashid Ahmad","doi":"10.1016/j.jestch.2024.101908","DOIUrl":"10.1016/j.jestch.2024.101908","url":null,"abstract":"<div><div>This study investigates the role of time-fractional derivatives in the entropy analysis of mixed convection in a reacting nanofluid within a vertical permeable channel saturated with a Darcy-Forchheimer porous medium. This is crucial for enhancing heat and mass transfer, incorporating memory effects, and addressing delayed responses in various engineering applications. Key phenomena such as thermophoresis, porous medium permeability, buoyancy forces, chemical reactions, viscous dissipation, Brownian motion, and velocity slip are considered. The study presents an advanced computational methodology that integrates the Euler wavelets collocation method with an implicit difference scheme to discretize the system of time-fractional partial differential equations. This advanced numerical framework is thoroughly validated, ensuring high accuracy in capturing the complex interactions between fluids and solids. The study reveals that a 20% increase in the Eckert number leads to a 15% rise in entropy generation, signifying greater energy dissipation within the system. Likewise, higher Reynolds numbers contribute to increased entropy generation, emphasizing the flow’s dissipative nature. On the other hand, a 10% increase in pressure gradient and Forchheimer parameters results in a 12% reduction in entropy generation, demonstrating their ability to control the system’s irreversibility. These findings pave the way for more optimized and energy-efficient designs in engineering systems involving porous media.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"60 ","pages":"Article 101908"},"PeriodicalIF":5.1,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.jestch.2024.101892
Yurim Han , Cristiano D’Andrea , Mirine Leem , Ji-Won Jung , Sooman Lim , Paolo Matteini , Byungil Hwang
Surface-enhanced Raman spectroscopy (SERS) has garnered increasing attention for its ability to detect molecules even at low concentrations; however, the fabrication methods for SERS sensors require further study aimed at simple and rapid on-body and environmental monitoring. In this context, we propose an etching-free method for fabricating silver nanowires (AgNWs)-SERS sensors based on AgNWs. A lift-off process was conducted to create a pattern without etching, and lamination of the dry film resist overcame the limitations associated with liquid photoresists. Consequently, the resulting AgNW-patterned substrate was used to evaluate the pH of the test solution in the range of 1.1 and 12.0 and exhibited a Raman signal enhancement of 2 × 106. This fast and cost-effective fabrication method, combined with the intrinsic flexibility of the substrate and rapid and reproducible response to pH variations, provides a foundation for applying AgNW-patterned substrates for microenvironmental analysis or developing wearable optical devices.
{"title":"Etching-free fabrication method for silver nanowires-based SERS sensors for enhanced molecule detection","authors":"Yurim Han , Cristiano D’Andrea , Mirine Leem , Ji-Won Jung , Sooman Lim , Paolo Matteini , Byungil Hwang","doi":"10.1016/j.jestch.2024.101892","DOIUrl":"10.1016/j.jestch.2024.101892","url":null,"abstract":"<div><div>Surface-enhanced Raman spectroscopy (SERS) has garnered increasing attention for its ability to detect molecules even at low concentrations; however, the fabrication methods for SERS sensors require further study aimed at simple and rapid on-body and environmental monitoring. In this context, we propose an etching-free method for fabricating silver nanowires (AgNWs)-SERS sensors based on AgNWs. A lift-off process was conducted to create a pattern without etching, and lamination of the dry film resist overcame the limitations associated with liquid photoresists. Consequently, the resulting AgNW-patterned substrate was used to evaluate the pH of the test solution in the range of 1.1 and 12.0 and exhibited a Raman signal enhancement of 2 × 10<sup>6</sup>. This fast and cost-effective fabrication method, combined with the intrinsic flexibility of the substrate and rapid and reproducible response to pH variations, provides a foundation for applying AgNW-patterned substrates for microenvironmental analysis or developing wearable optical devices.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"60 ","pages":"Article 101892"},"PeriodicalIF":5.1,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1016/j.jestch.2024.101894
Eunjin Choi , Jina Park , Kyuseung Han , Woojoo Lee
As open-source RISC-V cores continue to be released, the development of low-power multicore processors utilizing these cores is invigorating the edge/IoT device market. Nevertheless, comprehensive research on developing low-power multicore processors with integrated security features using existing open RISC-V cores remains limited. This study addresses this gap by introducing AESware, a dedicated lightweight hardware designed for energy-efficient AES (Advanced Encryption Standard) task execution, contributing to the development of AES-specific low-power RISC-V multicore processors. AESware supports variable key lengths and ensures minimal power consumption with a compact design. This standalone IP (Intellectual Property) is compatible with various open RISC-V cores, offering scalability and convenience. And importantly, we propose the most energy-efficient architecture for multicore processors equipped with AESware. Instead of assigning dedicated AESware to each core, we introduce a shared AESware architecture to maximize energy efficiency. We develop an operational algorithm for task scheduling in AESware, achieving maximum utilization and minimal latency while maintaining its lightweight nature. To evaluate our solution, we developed 24 processors into three groups: AESware-equipped, baseline, and those with an external AES accelerator per core. After FPGA (Field-Programmable Gate Array) prototyping for functional verification and power consumption analysis via 45 nm process technology synthesis, our findings revealed significant energy savings. AESware-equipped processors achieved up to 76%, 47%, and 33% energy savings at dual-, quad-, and octa-core configurations compared to baseline, respectively, and were more energy-efficient in running AES applications than those with individual accelerators.
{"title":"AESware: Developing AES-enabled low-power multicore processors leveraging open RISC-V cores with a shared lightweight AES accelerator","authors":"Eunjin Choi , Jina Park , Kyuseung Han , Woojoo Lee","doi":"10.1016/j.jestch.2024.101894","DOIUrl":"10.1016/j.jestch.2024.101894","url":null,"abstract":"<div><div>As open-source RISC-V cores continue to be released, the development of low-power multicore processors utilizing these cores is invigorating the edge/IoT device market. Nevertheless, comprehensive research on developing low-power multicore processors with integrated security features using existing open RISC-V cores remains limited. This study addresses this gap by introducing <em>AESware</em>, a dedicated lightweight hardware designed for energy-efficient AES (Advanced Encryption Standard) task execution, contributing to the development of AES-specific low-power RISC-V multicore processors. AESware supports variable key lengths and ensures minimal power consumption with a compact design. This standalone IP (Intellectual Property) is compatible with various open RISC-V cores, offering scalability and convenience. And importantly, we propose the most energy-efficient architecture for multicore processors equipped with AESware. Instead of assigning dedicated AESware to each core, we introduce a shared AESware architecture to maximize energy efficiency. We develop an operational algorithm for task scheduling in AESware, achieving maximum utilization and minimal latency while maintaining its lightweight nature. To evaluate our solution, we developed 24 processors into three groups: AESware-equipped, baseline, and those with an external AES accelerator per core. After FPGA (Field-Programmable Gate Array) prototyping for functional verification and power consumption analysis via 45 nm process technology synthesis, our findings revealed significant energy savings. AESware-equipped processors achieved up to 76%, 47%, and 33% energy savings at dual-, quad-, and octa-core configurations compared to baseline, respectively, and were more energy-efficient in running AES applications than those with individual accelerators.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"60 ","pages":"Article 101894"},"PeriodicalIF":5.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1016/j.jestch.2024.101891
Khadija Mawra , Khuram Rashid , Fahad K. Alqahtani , Idrees Zafar , Jae-Gwon Jeong , Minkwan Ju
Modular construction is an emerging technique being adopted with varying levels of modularization. Assessing its sustainability performance during the planning phase is essential for deciding between precast elements and traditional cast-in-situ methods. To address this, this study developed a comprehensive sustainability assessment framework that integrates economic, environmental, and social indicators. A total of 26 indicators were extracted from the literature and prioritized by 55 experts. Thus, ten indicators were designated critical and quantified for the case of a three-story building using three slab alternatives: cast-in-situ (CIS), I-girder (PIS), and hollow core (PHS). BIM analyses and qualitative data for the ten sustainability criteria were configured into a decision matrix through a multicriteria decision-making approach, i.e., TOPSIS. Simulations were conducted on the matrix by varying the weights of sustainability domains (0.33 – 0.80) to prioritize the best alternative. The BIM analyses revealed significant advantages of PIS, including a 33% and 31% reduction in material and labor costs, respectively, compared to the CIS. Furthermore, precast elements show a 60% reduction in carbon emissions, a 95% decrease in wastage, and an additional benefit of 90% less air pollution. The TOPSIS simulations concluded the PIS system as the most sustainable alternative with the highest relative closeness coefficients (RCC) in all domains and weight cases. The PIS performed best in the environmental with RCCs of 0.83 – 0.97, then in the economic with 0.83 – 0.86, and with 0.69 – 0.83 in the social domain.
{"title":"Sustainability assessment integrating BIM and decision-making for modular slab construction against conventional cast-in-situ","authors":"Khadija Mawra , Khuram Rashid , Fahad K. Alqahtani , Idrees Zafar , Jae-Gwon Jeong , Minkwan Ju","doi":"10.1016/j.jestch.2024.101891","DOIUrl":"10.1016/j.jestch.2024.101891","url":null,"abstract":"<div><div>Modular construction is an emerging technique being adopted with varying levels of modularization. Assessing its sustainability performance during the planning phase is essential for deciding between precast elements and traditional cast-in-situ methods. To address this, this study developed a comprehensive sustainability assessment framework that integrates economic, environmental, and social indicators. A total of 26 indicators were extracted from the literature and prioritized by 55 experts. Thus, ten indicators were designated critical and quantified for the case of a three-story building using three slab alternatives: cast-in-situ (CIS), I-girder (PIS), and hollow core (PHS). BIM analyses and qualitative data for the ten sustainability criteria were configured into a decision matrix through a multicriteria decision-making approach, i.e., TOPSIS. Simulations were conducted on the matrix by varying the weights of sustainability domains (0.33 – 0.80) to prioritize the best alternative. The BIM analyses revealed significant advantages of PIS, including a 33% and 31% reduction in material and labor costs, respectively, compared to the CIS. Furthermore, precast elements show a 60% reduction in carbon emissions, a 95% decrease in wastage, and an additional benefit of 90% less air pollution. The TOPSIS simulations concluded the PIS system as the most sustainable alternative with the highest relative closeness coefficients (RCC) in all domains and weight cases. The PIS performed best in the environmental with RCCs of 0.83 – 0.97, then in the economic with 0.83 – 0.86, and with 0.69 – 0.83 in the social domain.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"60 ","pages":"Article 101891"},"PeriodicalIF":5.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1016/j.jestch.2024.101890
Dino Pirrello , Luigi Teodosio , Fabio Berni
This paper deals with the performance improvement of a turbocharged spark ignition (SI) engine redesigned by adopting a refined 1D model and a rule-based (RB) calibration strategy. The new SI engine operates without the throttle valve and combines an early intake valve strategy with a two-stage compression ratio device. The resulting SI unit represents a promising short-term technical solution and it is also suitable as a flexible fuel engine.
In a first phase, the engine model is validated with the experiments in the original configuration, and then it is virtually modified to obtain the redesigned solution. In this redesign process, the effects of the variations of engine geometry and valve strategy on combustion and performance are considered by phenomenological in-cylinder sub-models. Afterwards, the RB strategy is implemented into the re-designed engine model and assessed by comparing the results with the ones of an advanced calibration approach, based on an optimization with genetic algorithm performed by coupling the 1D model with an optimizer.
The RB method replicates with acceptable accuracy the numerical trends of performance and control parameters of the SI engine coming from the optimizer. Once the capability is verified, the RB strategy is adopted to compute the steady operating map of the redesigned engine, with significantly less effort than an optimization. The map provides noticeable benefits in terms of full load torque, fuel consumption at medium-to-low loads and a slight extension of the minimum fuel consumption region. The combustion stability is maintained at acceptable levels, although it is improvable at very low loads and speeds. The presented methodology has a general validity for conventional SI engines and can be efficiently exploited to support the redesign stage of SI units for improved performance, with reduced computational effort. It also offers a method to rapidly compute the operating map of SI engines for subsequent on-vehicle analyses.
本文论述了采用改进的一维模型和基于规则(RB)的标定策略重新设计的涡轮增压火花点火(SI)发动机的性能改进。新型 SI 发动机工作时不使用节气门,并将早期进气阀策略与两级压缩比装置相结合。在第一阶段,发动机模型通过原始配置的实验进行验证,然后对其进行虚拟修改,以获得重新设计的解决方案。在这一重新设计过程中,发动机几何形状和气门策略的变化对燃烧和性能的影响是通过现象学缸内子模型来考虑的。然后,在重新设计的发动机模型中实施 RB 策略,并将其结果与先进的标定方法结果进行比较评估,该方法基于遗传算法优化,通过将一维模型与优化器耦合执行。一旦能力得到验证,就可以采用 RB 策略计算重新设计的发动机的稳定运行图,其工作量远远小于优化。该图谱在满负荷扭矩、中低负荷油耗和略微扩大最小油耗区域方面都有明显的优势。燃烧稳定性保持在可接受的水平,但在极低负荷和速度下仍可改善。所提出的方法对传统的 SI 发动机具有普遍的有效性,可以有效地用于支持 SI 装置的重新设计阶段,以提高性能,同时减少计算工作量。它还提供了一种快速计算 SI 发动机运行图的方法,以便进行后续的车载分析。
{"title":"1D model and rule-based calibration strategy to improve the performance of a turbocharged spark ignition engine over the whole engine map","authors":"Dino Pirrello , Luigi Teodosio , Fabio Berni","doi":"10.1016/j.jestch.2024.101890","DOIUrl":"10.1016/j.jestch.2024.101890","url":null,"abstract":"<div><div>This paper deals with the performance improvement of a turbocharged spark ignition (SI) engine redesigned by adopting a refined 1D model and a rule-based (RB) calibration strategy. The new SI engine operates without the throttle valve and combines an early intake valve strategy with a two-stage compression ratio device. The resulting SI unit represents a promising short-term technical solution and it is also suitable as a flexible fuel engine.</div><div>In a first phase, the engine model is validated with the experiments in the original configuration, and then it is virtually modified to obtain the redesigned solution. In this redesign process, the effects of the variations of engine geometry and valve strategy on combustion and performance are considered by phenomenological in-cylinder sub-models. Afterwards, the RB strategy is implemented into the re-designed engine model and assessed by comparing the results with the ones of an advanced calibration approach, based on an optimization with genetic algorithm performed by coupling the 1D model with an optimizer.</div><div>The RB method replicates with acceptable accuracy the numerical trends of performance and control parameters of the SI engine coming from the optimizer. Once the capability is verified, the RB strategy is adopted to compute the steady operating map of the redesigned engine, with significantly less effort than an optimization. The map provides noticeable benefits in terms of full load torque, fuel consumption at medium-to-low loads and a slight extension of the minimum fuel consumption region. The combustion stability is maintained at acceptable levels, although it is improvable at very low loads and speeds. The presented methodology has a general validity for conventional SI engines and can be efficiently exploited to support the redesign stage of SI units for improved performance, with reduced computational effort. It also offers a method to rapidly compute the operating map of SI engines for subsequent on-vehicle analyses.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"60 ","pages":"Article 101890"},"PeriodicalIF":5.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1016/j.jestch.2024.101897
Guomeng Zhao , Diego Martín , Mohammad Khishe , Leren Qian , Pradeep Jangir
This paper develops an innovative Objective-based Survival Individual Enhancement approach for the Chimp Optimization Algorithm (OSIE-CHOA) designed to enhance financial accounting profit prediction using information systems. The OSIE-CHOA focuses on improving the search process by simultaneously elevating the fitness of under-performing individuals within a population and strengthening the diversity among the top-performing ones. Within the OSIE-CHOA, we identify the four most promising chimps during each iteration. Subsequently, half of the highest-performing chimps are selected for elimination and repositioning around these fortunate individuals, with an equal probability assigned to each chimp. According to the experimental findings, it is clearly seen that OSIE-CHOA considerably enhances prediction accuracy, allowing a decrease in the root mean square error (RMSE) by 15% and the mean absolute error (MAE) by 18% compared to the traditional CHOA. Moreover, OSIE-CHOA shows a convergence rate that is 20% higher, which makes it a good and efficient tool for financial analysts who require accurate and reliable profit forecasting. By facilitating the optimization of profit prediction models, OSIE-CHOA leads to the improvement of decision-making within the context of financial accounting information systems.
{"title":"Objective-based survival individual enhancement in the chimp optimization algorithm for the profit prediction using financial accounting information system","authors":"Guomeng Zhao , Diego Martín , Mohammad Khishe , Leren Qian , Pradeep Jangir","doi":"10.1016/j.jestch.2024.101897","DOIUrl":"10.1016/j.jestch.2024.101897","url":null,"abstract":"<div><div>This paper develops an innovative Objective-based Survival Individual Enhancement approach for the Chimp Optimization Algorithm (OSIE-CHOA) designed to enhance financial accounting profit prediction using information systems. The OSIE-CHOA focuses on improving the search process by simultaneously elevating the fitness of under-performing individuals within a population and strengthening the diversity among the top-performing ones. Within the OSIE-CHOA, we identify the four most promising chimps during each iteration. Subsequently, half of the highest-performing chimps are selected for elimination and repositioning around these fortunate individuals, with an equal probability assigned to each chimp. According to the experimental findings, it is clearly seen that OSIE-CHOA considerably enhances prediction accuracy, allowing a decrease in the root mean square error (RMSE) by 15% and the mean absolute error (MAE) by 18% compared to the traditional CHOA. Moreover, OSIE-CHOA shows a convergence rate that is 20% higher, which makes it a good and efficient tool for financial analysts who require accurate and reliable profit forecasting. By facilitating the optimization of profit prediction models, OSIE-CHOA leads to the improvement of decision-making within the context of financial accounting information systems.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"60 ","pages":"Article 101897"},"PeriodicalIF":5.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1016/j.jestch.2024.101888
Shuli Liu , Bukao Ni , Xiaobo Wang , Yanhong Yang , Mohammad Sh. Daoud , Jun Sun , Abdulilah Mohammad Mayet , Guodao Zhang , Xinjun Miao
Within the heart’s ventricle walls are where Purkinje fibers (PFs) are located. They are essential for maintaining a steady cardiac beat because they allow the heart’s conduction system to create synchronized contractions of its ventricles. To replicate or treat some of this organ’s ailments and deficits, hardware representation of the various heart sections is necessary. Models that include a series of differential equations can be used to characterize the performance of Purkinje Fibers (PFs) in Cardiac. To develop hardware that mimics the performance of PF of Cardiac system, the Noble model is updated in this study. Due to the requirement for using units like multipliers, the original model contains non-linear components that are slow and expensive in terms of hardware resources. The main novelty of revised model incorporates non-linear components that have been converted into two base-2 terms accompanied by additional factors. These calculations are executed through efficient and economical digital hardware, including logical shift operations, additions, and subtractions, enabling high-speed processing. To validate the precision and practicality of the suggested model, a digital platform, Virtex-7 FPGA, is employed. The findings demonstrate the suggested model’s simplicity of implementation on this board and its capability to generate various PF output patterns at a maximum frequency of 381.42 MHz. The proposed digital circuit can be applied in application-based fields according to high-speed, low-cost, and accurate design. Based on the high-switching speed of neural data transferring in the human brain, other organs that are realized on hardware platforms need to be designed in high-frequency (speed-up) for adaptation with the brain. Due to removing the non-linear terms, the modified model works 1.95 times faster than the original one and saves the FPGA resources up to 35%. In case of real-world applications, an efficient low-cost hardware design for high-frequency, accurate replication of cardiac Purkinje fiber cells has the potential to revolutionize the development of medical devices for diagnosing and treating cardiac conditions. The speed and cost-effectiveness of design make it particularly promising for the creation of advanced cardiac simulation and treatment systems. The high-speed, low-cost, and accurate hardware design has broader implications for biomedical engineering beyond the cardiac system. The ability to efficiently replicate the functions of biological systems using hardware could open doors for developing high-speed, low-cost, and accurate hardware models for simulating and understanding other biological processes, such as neural data processing in the human brain or the function of other vital organs.
{"title":"Efficient low-cost design for high-frequency, accurate hardware implementation of cardiac Purkinje fiber cells for biomedical engineering approaches","authors":"Shuli Liu , Bukao Ni , Xiaobo Wang , Yanhong Yang , Mohammad Sh. Daoud , Jun Sun , Abdulilah Mohammad Mayet , Guodao Zhang , Xinjun Miao","doi":"10.1016/j.jestch.2024.101888","DOIUrl":"10.1016/j.jestch.2024.101888","url":null,"abstract":"<div><div>Within the heart’s ventricle walls are where Purkinje fibers (PFs) are located. They are essential for maintaining a steady cardiac beat because they allow the heart’s conduction system to create synchronized contractions of its ventricles. To replicate or treat some of this organ’s ailments and deficits, hardware representation of the various heart sections is necessary. Models that include a series of differential equations can be used to characterize the performance of Purkinje Fibers (PFs) in Cardiac. To develop hardware that mimics the performance of PF of Cardiac system, the Noble model is updated in this study. Due to the requirement for using units like multipliers, the original model contains non-linear components that are slow and expensive in terms of hardware resources. The main novelty of revised model incorporates non-linear components that have been converted into two base-2 terms accompanied by additional factors. These calculations are executed through efficient and economical digital hardware, including logical shift operations, additions, and subtractions, enabling high-speed processing. To validate the precision and practicality of the suggested model, a digital platform, Virtex-7 FPGA, is employed. The findings demonstrate the suggested model’s simplicity of implementation on this board and its capability to generate various PF output patterns at a maximum frequency of 381.42 MHz. The proposed digital circuit can be applied in application-based fields according to high-speed, low-cost, and accurate design. Based on the high-switching speed of neural data transferring in the human brain, other organs that are realized on hardware platforms need to be designed in high-frequency (speed-up) for adaptation with the brain. Due to removing the non-linear terms, the modified model works 1.95 times faster than the original one and saves the FPGA resources up to 35%. In case of real-world applications, an efficient low-cost hardware design for high-frequency, accurate replication of cardiac Purkinje fiber cells has the potential to revolutionize the development of medical devices for diagnosing and treating cardiac conditions. The speed and cost-effectiveness of design make it particularly promising for the creation of advanced cardiac simulation and treatment systems. The high-speed, low-cost, and accurate hardware design has broader implications for biomedical engineering beyond the cardiac system. The ability to efficiently replicate the functions of biological systems using hardware could open doors for developing high-speed, low-cost, and accurate hardware models for simulating and understanding other biological processes, such as neural data processing in the human brain or the function of other vital organs.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"60 ","pages":"Article 101888"},"PeriodicalIF":5.1,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1016/j.jestch.2024.101882
Imran Riaz , Ahmad Nazri Ali , Haidi Ibrahim
Biometric authentication systems have been widely deployed in various applications, including security systems, bank transactions and authentication on smart electronic devices. Obtaining the salient and distinctive features is very important for achieving high accuracy in biometric authentication systems. Local binary pattern (LBP) variants are the best-performing local descriptors and are popular due to computational simplicity and flexibility. However, most of the existing LBP variants consider a 3 × 3 window with one specific central pixel for all neighborhoods, which affects the sensitivity to non-monotonic intensity changes and reduces the robustness of the feature description. Thus, a new variant of LBP called TD-LBP is introduced, which is based on the four T-shape sub-windows and two diagonal (D) regions. Inspired by the sub-windowing approach to capture the microstructure information of the image, TD-LBP first divides the 3 × 3-pixel window into four sub-regions of T-shape structure and then takes two diagonal regions to extract more texture information. Three different classifiers, artificial neural network (ANN), support vector machine (SVM), and k-nearest neighbor (KNN) are employed to evaluate the effectiveness of the proposed approach for dorsal finger crease biometric system. Experiments conducted on the self-collected dorsal finger crease dataset demonstrate the prominent performance and suitability of the proposed TD-LBP for a newly explored finger crease biometric identifier. The proposed approach was able to achieve 96.67 %, 89.26 %, and 82.22 % classification accuracies for ANN, SVM, and KNN classifiers, respectively. Moreover, we clearly validate the viability of the proposed TD-LBP descriptor for the dorsal finger crease biometric trait by comparing the results with state-of-the-art biometric system based LBP descriptors. The significance of the TD-LBP method is demonstrated with improved verification and identification results through receiver operating characteristic (ROC) and cumulative match characteristic (CMC) curves respectively.
{"title":"A novel sub-windowing local binary pattern approach for dorsal finger creases based biometric classification system","authors":"Imran Riaz , Ahmad Nazri Ali , Haidi Ibrahim","doi":"10.1016/j.jestch.2024.101882","DOIUrl":"10.1016/j.jestch.2024.101882","url":null,"abstract":"<div><div>Biometric authentication systems have been widely deployed in various applications, including security systems, bank transactions and authentication on smart electronic devices. Obtaining the salient and distinctive features is very important for achieving high accuracy in biometric authentication systems. Local binary pattern (LBP) variants are the best-performing local descriptors and are popular due to computational simplicity and flexibility. However, most of the existing LBP variants consider a 3 × 3 window with one specific central pixel for all neighborhoods, which affects the sensitivity to non-monotonic intensity changes and reduces the robustness of the feature description. Thus, a new variant of LBP called TD-LBP is introduced, which is based on the four T-shape sub-windows and two diagonal (D) regions. Inspired by the sub-windowing approach to capture the microstructure information of the image, TD-LBP first divides the 3 × 3-pixel window into four sub-regions of T-shape structure and then takes two diagonal regions to extract more texture information. Three different classifiers, artificial neural network (ANN), support vector machine (SVM), and k-nearest neighbor (KNN) are employed to evaluate the effectiveness of the proposed approach for dorsal finger crease biometric system. Experiments conducted on the self-collected dorsal finger crease dataset demonstrate the prominent performance and suitability of the proposed TD-LBP for a newly explored finger crease biometric identifier. The proposed approach was able to achieve 96.67 %, 89.26 %, and 82.22 % classification accuracies for ANN, SVM, and KNN classifiers, respectively. Moreover, we clearly validate the viability of the proposed TD-LBP descriptor for the dorsal finger crease biometric trait by comparing the results with state-of-the-art biometric system based LBP descriptors. The significance of the TD-LBP method is demonstrated with improved verification and identification results through receiver operating characteristic (ROC) and cumulative match characteristic (CMC) curves respectively.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"60 ","pages":"Article 101882"},"PeriodicalIF":5.1,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1016/j.jestch.2024.101874
Heba Askr , Mahmoud Abdel-Salam , Václav Snášel , Aboul Ella Hassanien
This paper presents a Deep Learning (DL) model designed for green hydrogen production using a solar-powered water electrolyzer. The model operates in four phases, beginning with the analysis of a solar radiation dataset and culminating in the prediction of green hydrogen production. A novel hybrid model, termed DeepGaz, is introduced to predict the solar energy required for hydrogen production. DeepGaz combines a new Chaotic-Lévy variant of the gazelle optimization algorithm (CGOA) with a recurrent neural network (RNN/LSTM) for hyperparameter optimization. To validate the performance of the proposed model, CGOA is first tested on the CEC2022 benchmark problems and compared with other advanced metaheuristic algorithms, with its accuracy further confirmed using Wilcoxon’s rank-sum statistical analysis. Subsequently, DeepGaz is applied to a solar-based green hydrogen dataset, optimizing key parameters such as solar radiation, temperature, wind direction, and speed, collected from the HI-SEAS weather station in Hawaii over a four-month period. The results show that DeepGaz significantly improves the prediction process, achieving an average daily hydrogen production of 15.5199 kg/day during the four-month study. The model exhibits strong potential in predicting green hydrogen production, excelling in computational time, convergence stability, and overall solution accuracy.
{"title":"A green hydrogen production model from solar powered water electrolyze based on deep chaotic Lévy gazelle optimization","authors":"Heba Askr , Mahmoud Abdel-Salam , Václav Snášel , Aboul Ella Hassanien","doi":"10.1016/j.jestch.2024.101874","DOIUrl":"10.1016/j.jestch.2024.101874","url":null,"abstract":"<div><div>This paper presents a Deep Learning (DL) model designed for green hydrogen production using a solar-powered water electrolyzer. The model operates in four phases, beginning with the analysis of a solar radiation dataset and culminating in the prediction of green hydrogen production. A novel hybrid model, termed <em>DeepGaz</em>, is introduced to predict the solar energy required for hydrogen production. DeepGaz combines a new Chaotic-Lévy variant of the gazelle optimization algorithm (CGOA) with a recurrent neural network (RNN/LSTM) for hyperparameter optimization. To validate the performance of the proposed model, CGOA is first tested on the CEC2022 benchmark problems and compared with other advanced metaheuristic algorithms, with its accuracy further confirmed using Wilcoxon’s rank-sum statistical analysis. Subsequently, DeepGaz is applied to a solar-based green hydrogen dataset, optimizing key parameters such as solar radiation, temperature, wind direction, and speed, collected from the HI-SEAS weather station in Hawaii over a four-month period. The results show that DeepGaz significantly improves the prediction process, achieving an average daily hydrogen production of 15.5199 kg/day during the four-month study. The model exhibits strong potential in predicting green hydrogen production, excelling in computational time, convergence stability, and overall solution accuracy.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"60 ","pages":"Article 101874"},"PeriodicalIF":5.1,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-09DOI: 10.1016/j.jestch.2024.101877
Mohammad Lutful Hakim , Mohammad Tariqul Islam , Mandeep Singh Jit Singh , Touhidul Alam , Abdulmajeed M. Alenezi , Mohamed S. Soliman
This paper proposed a novel design of planar microwave sensor aimed at distinguishing and analyzing the permittivity properties of regular solid materials with high sensitivity for C and X band applications. These sensor utilize a planar backbone-shaped metamaterial resonator with spur line filters, which intensify the electric field. This approach allows the permittivity characteristics of the resonator to influence factors like resonance frequency shifting and notably high sensitivity, reaching 6.61 % at reflection mode. The sensitivity of these sensor is validated using common materials (Rogers 4350B, Rogers RT5880, UL1250 and FR-4) through the specific experimental methodology. The measured results agree well with the simulated results, and this validation process permits the potential characterization and detection of materials. Furthermore, the paper derives a mathematical formula to obtain the properties of materials using resonance frequency shifting. Consequently, proposed sensor represent a promising solution for characterizing material permittivity properties.
本文提出了一种新颖的平面微波传感器设计,旨在以高灵敏度区分和分析常规固体材料的介电常数特性,适用于 C 波段和 X 波段应用。这些传感器利用一个平面骨干形超材料谐振器和支线滤波器来增强电场。这种方法允许谐振器的介电常数特性影响谐振频率偏移等因素,灵敏度明显较高,在反射模式下达到 6.61%。通过特定的实验方法,使用普通材料(罗杰斯 4350B、罗杰斯 RT5880、UL1250 和 FR-4)验证了这些传感器的灵敏度。测量结果与模拟结果十分吻合,这一验证过程允许对材料进行潜在表征和检测。此外,论文还推导出了一个数学公式,可以利用共振频率偏移获得材料的特性。因此,所提出的传感器是表征材料介电常数特性的一种有前途的解决方案。
{"title":"Intensified electric field based highly sensitive backbone-shaped C and X band microwave metamaterial sensor for permittivity characterization applications","authors":"Mohammad Lutful Hakim , Mohammad Tariqul Islam , Mandeep Singh Jit Singh , Touhidul Alam , Abdulmajeed M. Alenezi , Mohamed S. Soliman","doi":"10.1016/j.jestch.2024.101877","DOIUrl":"10.1016/j.jestch.2024.101877","url":null,"abstract":"<div><div>This paper proposed a novel design of planar microwave sensor aimed at distinguishing and analyzing the permittivity properties of regular solid materials with high sensitivity for C and X band applications. These sensor utilize a planar backbone-shaped metamaterial resonator with spur line filters, which intensify the electric field. This approach allows the permittivity characteristics of the resonator to influence factors like resonance frequency shifting and notably high sensitivity, reaching 6.61 % at reflection mode. The sensitivity of these sensor is validated using common materials (Rogers 4350B, Rogers RT5880, UL1250 and FR-4) through the specific experimental methodology. The measured results agree well with the simulated results, and this validation process permits the potential characterization and detection of materials. Furthermore, the paper derives a mathematical formula to obtain the properties of materials using resonance frequency shifting. Consequently, proposed sensor represent a promising solution for characterizing material permittivity properties.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"60 ","pages":"Article 101877"},"PeriodicalIF":5.1,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}