Prediction of spectral characteristics of lithium-like ions by artificial neural network

IF 1.6 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Indian Journal of Physics Pub Date : 2024-07-26 DOI:10.1007/s12648-024-03346-6
Salman Raza, Ahmed Ali Rajput, Mustaqeem Zahid, Shafiq Ur Rehman, Arif Akhtar Azam, Zaheer Uddin
{"title":"Prediction of spectral characteristics of lithium-like ions by artificial neural network","authors":"Salman Raza, Ahmed Ali Rajput, Mustaqeem Zahid, Shafiq Ur Rehman, Arif Akhtar Azam, Zaheer Uddin","doi":"10.1007/s12648-024-03346-6","DOIUrl":null,"url":null,"abstract":"<p>An Artificial Neural Network has been employed to calculate spectral characteristics of lithium-like Beryllium (Be II), Boron (B III), Carbon (C 1V), and Nitrogen (N V) ions. The base data (input parameters) consisted of quantum defects and the inverse square of the principal quantum number of lithium atoms for calculating quantum defects and energies of lithium-like ions. The study has two parts; in the first part, the quantum defects of Lithium and lithium-like ions (Be II, B III, C 1V, and N V) were calculated using Quantum Defect Theory (QDT). In the second part, an Artificial Neural Network (ANN) with a single hidden layer and five neurons was utilized to predict lithium-like quantum defects. 70% of the data was used to train the network, and 15% was used for testing and validating the values of quantum defects up to n = 100 for each atom and ion. The extended Rydberg–Ritz formula was used to calculate the energies of the lithium-like elements.</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"55 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s12648-024-03346-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An Artificial Neural Network has been employed to calculate spectral characteristics of lithium-like Beryllium (Be II), Boron (B III), Carbon (C 1V), and Nitrogen (N V) ions. The base data (input parameters) consisted of quantum defects and the inverse square of the principal quantum number of lithium atoms for calculating quantum defects and energies of lithium-like ions. The study has two parts; in the first part, the quantum defects of Lithium and lithium-like ions (Be II, B III, C 1V, and N V) were calculated using Quantum Defect Theory (QDT). In the second part, an Artificial Neural Network (ANN) with a single hidden layer and five neurons was utilized to predict lithium-like quantum defects. 70% of the data was used to train the network, and 15% was used for testing and validating the values of quantum defects up to n = 100 for each atom and ion. The extended Rydberg–Ritz formula was used to calculate the energies of the lithium-like elements.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用人工神经网络预测类锂离子的光谱特性
采用人工神经网络计算类锂铍离子(Be II)、硼离子(B III)、碳离子(C 1V)和氮离子(N V)的光谱特性。基础数据(输入参数)包括量子缺陷和锂原子主量子数的反平方,用于计算类锂离子的量子缺陷和能量。研究分为两部分:第一部分,利用量子缺陷理论(QDT)计算锂和类锂离子(Be II、B III、C 1V 和 N V)的量子缺陷。在第二部分中,利用一个具有单隐层和五个神经元的人工神经网络(ANN)来预测类锂量子缺陷。70% 的数据用于训练网络,15% 的数据用于测试和验证每个原子和离子的量子缺陷值,最高可达 n = 100。使用扩展的 Rydberg-Ritz 公式计算类锂元素的能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Indian Journal of Physics
Indian Journal of Physics 物理-物理:综合
CiteScore
3.40
自引率
10.00%
发文量
275
审稿时长
3-8 weeks
期刊介绍: Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.
期刊最新文献
Enhancing microstructure and magnetic properties of ribbons of Cu–Co–Ti alloy through ball milling: experimental insights and theoretical perspectives The electrical characterization of V2O5/p-Si prepared by spray pyrolysis technique using perfume atomizer Saturation effect in confined quantum systems with energy-dependent potentials Radiative neutron capture reaction rates for stellar nucleosynthesis Investigation of characteristics of ionospheric vertical plasma drift during sunset over the mid-latitude station Nicosia, Cyprus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1