Enhanced CO2 capture and stability of MgO modified with alkali metal nitrates and carbonates at moderate temperature

IF 2.8 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of chemical technology and biotechnology Pub Date : 2024-07-23 DOI:10.1002/jctb.7717
Shuaipeng Li, Neng Guo, Dongdong Zhu, Dazhan Jiang, Zhenting Chen, Shengwen Chen, Zhiguo Sun, Jifen Wang
{"title":"Enhanced CO2 capture and stability of MgO modified with alkali metal nitrates and carbonates at moderate temperature","authors":"Shuaipeng Li, Neng Guo, Dongdong Zhu, Dazhan Jiang, Zhenting Chen, Shengwen Chen, Zhiguo Sun, Jifen Wang","doi":"10.1002/jctb.7717","DOIUrl":null,"url":null,"abstract":"BACKGROUNDMagnesium oxide (MgO) is favored for solid‐state carbon dioxide (CO2) capture due to its high theoretical adsorption capacity, abundant reserves, low cost, and environmental friendliness. However, its practical application in industry is hindered by low CO2 adsorption capacity under moderate operating conditions. In this work, MgO was modified by a deposition method using LiNO3, NaNO3, KNO3, Na2CO3 and K2CO3 as additives.RESULTSThe study determines optimal ratios within the [(Li, Na, K)x − (Na, K)]y/MgO system, specifically identifying x = 0.5 and y = 0.15 as most effective. At 275 °C under pure CO2 conditions, the adsorption capacity peaks at 0.631 g CO<jats:sub>2</jats:sub> g<jats:sup>−1</jats:sup> adsorbent. Effective regeneration of the adsorbent occurs at 400 °C under 100% N2 for 15 min. Under Integrated Gasification Combined Cycle (IGCC) conditions, the adsorption capacity stabilizes at 0.462 g g<jats:sup>−1</jats:sup> after 20 cycles, representing a 25% decrease from initial capacity.CONCLUSIONExperimental findings demonstrate that the inclusion of alkali metal salts in MgO precursors enhances the adsorbent's microstructure, thereby improving its CO2 capture efficiency and bolstering cycling stability. This research enhances our understanding of the factors influencing CO2 adsorption and cyclic stability in alkali metal salt‐promoted MgO, providing valuable insights for further refinement in the formulation and synthesis protocols of MgO‐based CO2 adsorbents. © 2024 Society of Chemical Industry (SCI).","PeriodicalId":15335,"journal":{"name":"Journal of chemical technology and biotechnology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical technology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jctb.7717","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

BACKGROUNDMagnesium oxide (MgO) is favored for solid‐state carbon dioxide (CO2) capture due to its high theoretical adsorption capacity, abundant reserves, low cost, and environmental friendliness. However, its practical application in industry is hindered by low CO2 adsorption capacity under moderate operating conditions. In this work, MgO was modified by a deposition method using LiNO3, NaNO3, KNO3, Na2CO3 and K2CO3 as additives.RESULTSThe study determines optimal ratios within the [(Li, Na, K)x − (Na, K)]y/MgO system, specifically identifying x = 0.5 and y = 0.15 as most effective. At 275 °C under pure CO2 conditions, the adsorption capacity peaks at 0.631 g CO2 g−1 adsorbent. Effective regeneration of the adsorbent occurs at 400 °C under 100% N2 for 15 min. Under Integrated Gasification Combined Cycle (IGCC) conditions, the adsorption capacity stabilizes at 0.462 g g−1 after 20 cycles, representing a 25% decrease from initial capacity.CONCLUSIONExperimental findings demonstrate that the inclusion of alkali metal salts in MgO precursors enhances the adsorbent's microstructure, thereby improving its CO2 capture efficiency and bolstering cycling stability. This research enhances our understanding of the factors influencing CO2 adsorption and cyclic stability in alkali metal salt‐promoted MgO, providing valuable insights for further refinement in the formulation and synthesis protocols of MgO‐based CO2 adsorbents. © 2024 Society of Chemical Industry (SCI).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用碱金属硝酸盐和碳酸盐修饰的氧化镁在中温条件下增强二氧化碳捕获能力和稳定性
背景氧化镁(MgO)因其理论吸附容量高、储量丰富、成本低廉和环境友好而成为固态二氧化碳(CO2)捕集的首选。然而,由于在中等操作条件下的二氧化碳吸附能力较低,阻碍了其在工业中的实际应用。在这项研究中,使用 LiNO3、NaNO3、KNO3、Na2CO3 和 K2CO3 作为添加剂,通过沉积法对氧化镁进行了改性。结果该研究确定了 [(Li, Na, K)x - (Na, K)]y/MgO 体系中的最佳比率,特别是 x = 0.5 和 y = 0.15 最为有效。在 275 °C 的纯二氧化碳条件下,吸附容量在 0.631 g CO2 g-1 吸附剂时达到峰值。吸附剂在 400 ℃、100% N2 条件下 15 分钟后可有效再生。在整体煤气化联合循环 (IGCC) 条件下,吸附容量在 20 次循环后稳定在 0.462 g g-1 的水平,比初始容量下降了 25%。实验结果表明,在氧化镁前驱体中加入碱金属盐可以增强吸附剂的微观结构,从而提高其二氧化碳捕集效率并增强循环稳定性。这项研究加深了我们对影响碱金属盐促进氧化镁吸附二氧化碳和循环稳定性的因素的理解,为进一步完善氧化镁基二氧化碳吸附剂的配方和合成方案提供了宝贵的见解。© 2024 化学工业学会(SCI)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
5.90%
发文量
268
审稿时长
1.7 months
期刊介绍: Journal of Chemical Technology and Biotechnology(JCTB) is an international, inter-disciplinary peer-reviewed journal concerned with the application of scientific discoveries and advancements in chemical and biological technology that aim towards economically and environmentally sustainable industrial processes.
期刊最新文献
Issue Information Enhanced diclofenac adsorption and degradation using iron‐loaded modified spent bleaching earth carbon in the presence of clofibric acid: mechanistic insights and toxicity assessment Bidirectional extracellular electron transfers in Serratia marcescens and Stenotrophomonas sp. correlate to EPS and Cr(VI) removal in single‐chamber bioelectrochemical systems Leveraging the dynamics of microalgal CO2 capture to estimate the maximum inherent photosynthetic potential Prediction models to control final control elements for neutralization process in chemical industries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1