Insight into the thermal transport by considering the modified Buongiorno model during the silicon oil-based hybrid nanofluid flow: probed by artificial intelligence

IF 1.9 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Frontiers in Physics Pub Date : 2024-07-23 DOI:10.3389/fphy.2024.1372675
Asad Ullah, Hongxing Yao, Farid Ullah, Haifa Alqahtani, Emad A. A. Ismail, Fuad A. Awwad, Abeer A. Shaaban
{"title":"Insight into the thermal transport by considering the modified Buongiorno model during the silicon oil-based hybrid nanofluid flow: probed by artificial intelligence","authors":"Asad Ullah, Hongxing Yao, Farid Ullah, Haifa Alqahtani, Emad A. A. Ismail, Fuad A. Awwad, Abeer A. Shaaban","doi":"10.3389/fphy.2024.1372675","DOIUrl":null,"url":null,"abstract":"This work aims to analyze the impacts of the magnetic field, activation of energy, thermal radiation, thermophoresis, and Brownian effects on the hybrid nanofluid (HNF) (Ag++silicon oil) flow past a porous spinning disk. The pressure loss due to porosity is constituted by the Darcy–Forchheimer relation. The modified Buongiorno model is considered for simulating the flow field into a mathematical form. The modeled problem is further simplified with the new group of dimensionless variables and further transformed into a first-order system of equations. The reduced system is further analyzed with the Levenberg–Marquardt algorithm using a trained artificial neural network (ANN) with a tolerance, step size of 0.001, and 1,000 epochs. The state variables under the impacts of the pertinent parameters are assessed with graphs and tables. It has been observed that when the magnetic parameter increases, the velocity gradient of mono and hybrid nanofluids (NFs) decreases. As the input of the Darcy–Forchheimer parameter increases, the velocity profiles decrease. The result shows that as the thermophoresis parameter increases, temperature and concentration increase as well. When the activation energy parameter increases, the concentration profile becomes higher. For a deep insight into the analysis of the problem, a statistical approach for data fitting in the form of regression lines and error histograms for NF and HNF is presented. The regression lines show that <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mn>100</mml:mn><mml:mi>%</mml:mi></mml:math></jats:inline-formula> of the data is used in curve fitting, while the error histograms depict the minimal zero error <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mo>−</mml:mo><mml:mn>7.1</mml:mn><mml:mi>e</mml:mi><mml:mn>6</mml:mn></mml:math></jats:inline-formula> for the increasing values of <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>N</mml:mi><mml:mi>t</mml:mi></mml:math></jats:inline-formula>. Furthermore, the mean square error and performance validation for each varying parameter are presented. For validation, the present results are compared with the available literature in the form of a table, where the current results show great agreement with the existing one.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":"70 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3389/fphy.2024.1372675","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work aims to analyze the impacts of the magnetic field, activation of energy, thermal radiation, thermophoresis, and Brownian effects on the hybrid nanofluid (HNF) (Ag++silicon oil) flow past a porous spinning disk. The pressure loss due to porosity is constituted by the Darcy–Forchheimer relation. The modified Buongiorno model is considered for simulating the flow field into a mathematical form. The modeled problem is further simplified with the new group of dimensionless variables and further transformed into a first-order system of equations. The reduced system is further analyzed with the Levenberg–Marquardt algorithm using a trained artificial neural network (ANN) with a tolerance, step size of 0.001, and 1,000 epochs. The state variables under the impacts of the pertinent parameters are assessed with graphs and tables. It has been observed that when the magnetic parameter increases, the velocity gradient of mono and hybrid nanofluids (NFs) decreases. As the input of the Darcy–Forchheimer parameter increases, the velocity profiles decrease. The result shows that as the thermophoresis parameter increases, temperature and concentration increase as well. When the activation energy parameter increases, the concentration profile becomes higher. For a deep insight into the analysis of the problem, a statistical approach for data fitting in the form of regression lines and error histograms for NF and HNF is presented. The regression lines show that 100% of the data is used in curve fitting, while the error histograms depict the minimal zero error 7.1e6 for the increasing values of Nt. Furthermore, the mean square error and performance validation for each varying parameter are presented. For validation, the present results are compared with the available literature in the form of a table, where the current results show great agreement with the existing one.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过人工智能探测硅油基混合纳米流体流动过程中的热传输:考虑修改后的布昂奥尔诺模型
这项工作旨在分析磁场、能量活化、热辐射、热泳和布朗效应对流经多孔旋转盘的混合纳米流体(HNF)(银++硅油)的影响。多孔性导致的压力损失由达西-福克海默关系构成。为了以数学形式模拟流场,考虑了改进的 Buongiorno 模型。利用新的无量纲变量组进一步简化了模型问题,并将其转化为一阶方程系统。利用训练有素的人工神经网络(ANN),以公差、步长 0.001 和 1,000 个历元的 Levenberg-Marquardt 算法对简化后的系统进行进一步分析。通过图形和表格对相关参数影响下的状态变量进行了评估。据观察,当磁性参数增加时,单纳米流体和混合纳米流体(NFs)的速度梯度会减小。随着达西-福克海默参数输入的增加,速度曲线也随之减小。结果表明,随着热泳参数的增加,温度和浓度也随之增加。当活化能参数增加时,浓度曲线变高。为了深入分析问题,本文介绍了以回归线和误差直方图形式对 NF 和 HNF 进行数据拟合的统计方法。回归线显示,在曲线拟合中使用了 100% 的数据,而误差直方图显示,随着 Nt 值的增加,最小零误差为 -7.1e6。此外,还显示了每个变化参数的均方误差和性能验证。在验证方面,以表格的形式将当前结果与现有文献进行了比较,结果显示当前结果与现有文献非常一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Physics
Frontiers in Physics Mathematics-Mathematical Physics
CiteScore
4.50
自引率
6.50%
发文量
1215
审稿时长
12 weeks
期刊介绍: Frontiers in Physics publishes rigorously peer-reviewed research across the entire field, from experimental, to computational and theoretical physics. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, engineers and the public worldwide.
期刊最新文献
Intelligent diagnostic method for developmental hip dislocation Bonner sphere measurements of high-energy neutron spectra from a 1 GeV/u 56Fe ion beam on an aluminum target and comparison to spectra obtained by Monte Carlo simulations Comparative analysis of the influence of different shapes of shaft sections on dust transportation Detection of natural pulse waves (PWs) in 3D using high frame rate imaging for anisotropy characterization Tunable continuous wave Yb:CaWO4 laser operating in NIR spectral region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1