Rui He , Xue Bai , Aijia Wei , Lijing Sun , Lihui Zhang , Guanyu Zhao , Qinglong Yuan , Jinping Mu , Xi Zhang , Zhenfa Liu
{"title":"Impact of polypyrrole coating on the electrochemical properties of Li1.04Fe0.3Mn0.7PO4 cathode materials","authors":"Rui He , Xue Bai , Aijia Wei , Lijing Sun , Lihui Zhang , Guanyu Zhao , Qinglong Yuan , Jinping Mu , Xi Zhang , Zhenfa Liu","doi":"10.1016/j.ssi.2024.116648","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, polypyrrole (PPy) was used to modify Li<sub>1.04</sub>Fe<sub>0.3</sub>Mn<sub>0.7</sub>PO<sub>4</sub> cathode materials and improve their conductivity. This study found that PPy could form a coating layer and conductive network on the material surface and effectively enhance the conductivity of the material as well as stability of the electrolyte interface. When the amount of PPy addition was 2%, the capacity retention rate at 0.2C and 20 °C was 98.6% after 500 cycles, and the capacity retention rate at −15 °C was 89.0% after 200 cycles. The capacity retention rate of the 2% PPy coated Li<sub>1.04</sub>Fe<sub>0.3</sub>Mn<sub>0.7</sub>PO<sub>4</sub> sample was 20.4% higher than that of the pure Li<sub>1.04</sub>Fe<sub>0.3</sub>Mn<sub>0.7</sub>PO<sub>4</sub> sample after 200 cycles at −15 °C.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"414 ","pages":"Article 116648"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824001966","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, polypyrrole (PPy) was used to modify Li1.04Fe0.3Mn0.7PO4 cathode materials and improve their conductivity. This study found that PPy could form a coating layer and conductive network on the material surface and effectively enhance the conductivity of the material as well as stability of the electrolyte interface. When the amount of PPy addition was 2%, the capacity retention rate at 0.2C and 20 °C was 98.6% after 500 cycles, and the capacity retention rate at −15 °C was 89.0% after 200 cycles. The capacity retention rate of the 2% PPy coated Li1.04Fe0.3Mn0.7PO4 sample was 20.4% higher than that of the pure Li1.04Fe0.3Mn0.7PO4 sample after 200 cycles at −15 °C.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.