Exploring the reversal curse and other deductive logical reasoning in BERT and GPT-based large language models

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Patterns Pub Date : 2024-07-25 DOI:10.1016/j.patter.2024.101030
{"title":"Exploring the reversal curse and other deductive logical reasoning in BERT and GPT-based large language models","authors":"","doi":"10.1016/j.patter.2024.101030","DOIUrl":null,"url":null,"abstract":"<p>The “Reversal Curse” describes the inability of autoregressive decoder large language models (LLMs) to deduce “B is A” from “A is B,” assuming that B and A are distinct and can be uniquely identified from each other. This logical failure suggests limitations in using generative pretrained transformer (GPT) models for tasks like constructing knowledge graphs. Our study revealed that a bidirectional LLM, bidirectional encoder representations from transformers (BERT), does not suffer from this issue. To investigate further, we focused on more complex deductive reasoning by training encoder and decoder LLMs to perform union and intersection operations on sets. While both types of models managed tasks involving two sets, they struggled with operations involving three sets. Our findings underscore the differences between encoder and decoder models in handling logical reasoning. Thus, selecting BERT or GPT should depend on the task’s specific needs, utilizing BERT’s bidirectional context comprehension or GPT’s sequence prediction strengths.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"7 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The “Reversal Curse” describes the inability of autoregressive decoder large language models (LLMs) to deduce “B is A” from “A is B,” assuming that B and A are distinct and can be uniquely identified from each other. This logical failure suggests limitations in using generative pretrained transformer (GPT) models for tasks like constructing knowledge graphs. Our study revealed that a bidirectional LLM, bidirectional encoder representations from transformers (BERT), does not suffer from this issue. To investigate further, we focused on more complex deductive reasoning by training encoder and decoder LLMs to perform union and intersection operations on sets. While both types of models managed tasks involving two sets, they struggled with operations involving three sets. Our findings underscore the differences between encoder and decoder models in handling logical reasoning. Thus, selecting BERT or GPT should depend on the task’s specific needs, utilizing BERT’s bidirectional context comprehension or GPT’s sequence prediction strengths.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索基于 BERT 和 GPT 的大型语言模型中的逆转诅咒和其他演绎逻辑推理
逆转诅咒 "描述的是自回归解码器大型语言模型(LLM)无法从 "A 是 B "推导出 "B 是 A",前提是 B 和 A 是不同的,并且可以从彼此中唯一地识别出来。这种逻辑上的失败表明,在构建知识图谱等任务中使用生成式预训练转换器(GPT)模型存在局限性。我们的研究表明,双向 LLM--来自变换器的双向编码器表征(BERT)并不存在这个问题。为了进一步研究,我们将重点放在了更复杂的演绎推理上,训练编码器和解码器 LLM 对集合进行联合和相交运算。虽然这两类模型都能完成涉及两个集合的任务,但它们在涉及三个集合的运算中却举步维艰。我们的发现强调了编码器模型和解码器模型在处理逻辑推理方面的差异。因此,选择 BERT 还是 GPT 应取决于任务的具体需求,利用 BERT 的双向上下文理解能力或 GPT 的序列预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
期刊最新文献
Data-knowledge co-driven innovations in engineering and management. Integration of large language models and federated learning. Decorrelative network architecture for robust electrocardiogram classification. Best holdout assessment is sufficient for cancer transcriptomic model selection. The recent Physics and Chemistry Nobel Prizes, AI, and the convergence of knowledge fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1