Low-latency passive thermal desensitization of a silicon micro-ring resonator with self-heating

IF 5.4 1区 物理与天体物理 Q1 OPTICS APL Photonics Pub Date : 2024-07-25 DOI:10.1063/5.0212591
Joshua C. Lederman, Simon Bilodeau, Eli Doris, Eric C. Blow, Weipeng Zhang, Yusuf Jimoh, Bhavin J. Shastri, Paul R. Prucnal
{"title":"Low-latency passive thermal desensitization of a silicon micro-ring resonator with self-heating","authors":"Joshua C. Lederman, Simon Bilodeau, Eli Doris, Eric C. Blow, Weipeng Zhang, Yusuf Jimoh, Bhavin J. Shastri, Paul R. Prucnal","doi":"10.1063/5.0212591","DOIUrl":null,"url":null,"abstract":"Analog photonic information processing can be implemented with low chip area using wavelength-division multiplexed systems, which typically manipulate light using micro-ring resonators. Micro-rings are uniquely susceptible to thermal crosstalk, with negative system performance consequences if not addressed. Existing thermal sensitivity mitigation methods face drawbacks including high complexity, high latency, high digital and analog hardware requirements, and CMOS incompatibility. Here, we demonstrate a passive thermal desensitization mechanism for silicon micro-ring resonators exploiting self-heating resulting from optical absorption. We achieve a 49% reduction in thermal crosstalk sensitivity and 1 µs adaptation latency using a system with no specialized micro-ring engineering, no additional control hardware, and no additional calibration. Our theoretical model indicates the potential for significant further desensitization gains with optimized micro-ring designs. Self-heating desensitization can be combined with active thermal stabilization to achieve both responsiveness and accuracy or applied independently to thermally desensitize large photonic systems for signal processing or neural network inference.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"24 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0212591","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Analog photonic information processing can be implemented with low chip area using wavelength-division multiplexed systems, which typically manipulate light using micro-ring resonators. Micro-rings are uniquely susceptible to thermal crosstalk, with negative system performance consequences if not addressed. Existing thermal sensitivity mitigation methods face drawbacks including high complexity, high latency, high digital and analog hardware requirements, and CMOS incompatibility. Here, we demonstrate a passive thermal desensitization mechanism for silicon micro-ring resonators exploiting self-heating resulting from optical absorption. We achieve a 49% reduction in thermal crosstalk sensitivity and 1 µs adaptation latency using a system with no specialized micro-ring engineering, no additional control hardware, and no additional calibration. Our theoretical model indicates the potential for significant further desensitization gains with optimized micro-ring designs. Self-heating desensitization can be combined with active thermal stabilization to achieve both responsiveness and accuracy or applied independently to thermally desensitize large photonic systems for signal processing or neural network inference.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有自加热功能的硅微环谐振器的低延迟被动热敏脱敏技术
利用波分复用系统可以以较小的芯片面积实现模拟光子信息处理,该系统通常使用微环谐振器来操纵光。微环特别容易受到热串扰的影响,如果不加以解决,会对系统性能产生负面影响。现有的热敏性缓解方法面临着高复杂性、高延迟、高数字和模拟硬件要求以及与 CMOS 不兼容等缺点。在这里,我们展示了一种利用光学吸收产生的自热为硅微环谐振器提供的被动热敏性降低机制。我们的系统不需要专门的微环工程设计,不需要额外的控制硬件,也不需要额外的校准,就能将热串扰灵敏度降低 49%,并实现 1 µs 的适应延迟。我们的理论模型表明,通过优化微环设计,有可能进一步显著提高脱敏效果。自热脱敏技术可与主动热稳定技术相结合,实现响应速度和精确度,也可单独用于大型光子系统的热脱敏,以进行信号处理或神经网络推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
APL Photonics
APL Photonics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍: APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.
期刊最新文献
Impact of polarization pulling on optimal spectrometer design for stimulated Brillouin scattering microscopy. Advancements in optical biosensing techniques: From fundamentals to future prospects The manipulation of spin angular momentum for binary circular Airy beam during propagation A tutorial on optical photothermal infrared (O-PTIR) microscopy Beyond memory-effect matrix-based imaging in scattering media by acousto-optic gating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1