Maria-Styliani Daraki, Konstantinos Marakakis, Georgia A Foutsitzi, Georgios E Stavroulakis
{"title":"Auxetic enhancement of the shunted piezoelectric effect for vibration suppression","authors":"Maria-Styliani Daraki, Konstantinos Marakakis, Georgia A Foutsitzi, Georgios E Stavroulakis","doi":"10.1177/10775463241266328","DOIUrl":null,"url":null,"abstract":"Shunted piezoelectric patches connected to passive electric circuits can be attached to a host structure for effective vibration attenuation. The effect of an auxetic layer to enhance the electromechanical coupling and subsequently the vibration suppression is studied here. Three different configurations are considered for the layer: a classical, a homogeneous auxetic and a layer with microstructure leading to auxetic behavior. First, is presented a modification of the “current-flowing” shunt circuit for multimode vibration control. Two finite element models have been validated, the frequency response graph of the system and the most suitable values of the electric parameters are calculated and a comparison is provided. Furthermore, it is shown that the vibration reduction of the second and third eigenmodes can be enhanced, provided that an auxetic of significant thickness is used. The results demonstrate the effect of the auxetic boosting on vibration suppression.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":"11 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10775463241266328","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Shunted piezoelectric patches connected to passive electric circuits can be attached to a host structure for effective vibration attenuation. The effect of an auxetic layer to enhance the electromechanical coupling and subsequently the vibration suppression is studied here. Three different configurations are considered for the layer: a classical, a homogeneous auxetic and a layer with microstructure leading to auxetic behavior. First, is presented a modification of the “current-flowing” shunt circuit for multimode vibration control. Two finite element models have been validated, the frequency response graph of the system and the most suitable values of the electric parameters are calculated and a comparison is provided. Furthermore, it is shown that the vibration reduction of the second and third eigenmodes can be enhanced, provided that an auxetic of significant thickness is used. The results demonstrate the effect of the auxetic boosting on vibration suppression.
期刊介绍:
The Journal of Vibration and Control is a peer-reviewed journal of analytical, computational and experimental studies of vibration phenomena and their control. The scope encompasses all linear and nonlinear vibration phenomena and covers topics such as: vibration and control of structures and machinery, signal analysis, aeroelasticity, neural networks, structural control and acoustics, noise and noise control, waves in solids and fluids and shock waves.