Physical conditions for basaltic volcanism beneath the Jeju volcanic field and the geodynamic implications

IF 1 4区 地球科学 Q4 GEOSCIENCES, MULTIDISCIPLINARY Geosciences Journal Pub Date : 2024-07-23 DOI:10.1007/s12303-024-0031-3
Seung Ryeol Lee
{"title":"Physical conditions for basaltic volcanism beneath the Jeju volcanic field and the geodynamic implications","authors":"Seung Ryeol Lee","doi":"10.1007/s12303-024-0031-3","DOIUrl":null,"url":null,"abstract":"<p>The origin of the late Cenozoic intraplate volcanoes in the NE Asia has sparked debate, with explanations ranging from deep mantle plume to lithospheric extension and decompression melting of mantle upwelling by distal subduction tectonics. The Jeju volcanic field (JVF), being the closest late Cenozoic intraplate volcano to the subduction zone, sheds light on whether the intraplate volcanism is primarily plume-related or linked to plate tectonics. This study determined the primary magma composition for JVF basalts, using the most primitive bulk-rock samples (MgO &gt; 8.5 wt%), by incrementally adding olivine to melt until reaching equilibrium with olivine (Mg# = 90) in the residual mantle. The estimated temperature and pressure of mantle melting are 1,466–1,587 °C and 2.1–4.1 GPa for anhydrous primary magma and 1,347–1,512 °C and 2.0–3.6 GPa for hydrous primary magma within the acceptable range of water contents (H<sub>2</sub>O = 2–4 wt%) reported from the Chinese intraplate basalts. The pressure estimates suggest that the minimal depth of the lithosphere-asthenosphere boundary is approximately ∼50–55 km. The mantle potential temperature for anhydrous primary magma is estimated to be 1,460–1,580 °C, higher than 1,300–1,400 °C of the ambient upper mantle, indicating a hot thermal regime below the JVF. Despite the absence of geophysical evidence for a mantle plume beneath the JVF, this study proposes that the hot mantle wedge is likely caused by the lateral influx or edge-driven convective upwelling of thermal plume near the leading edge of the stagnant Pacific Plate slab, contributing to the big mantle wedge. Intraplate volcanism in the JVF is proposed to be driven by lithospheric extension and decompression melting of the convective upwelling of hot sub-lithospheric mantle, influenced by distal subduction tectonics in the hot subduction zone. This model is supported by the present-day tectonics observed in the hot Ryukyu subduction zone, SW Japan.</p>","PeriodicalId":12659,"journal":{"name":"Geosciences Journal","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosciences Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12303-024-0031-3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The origin of the late Cenozoic intraplate volcanoes in the NE Asia has sparked debate, with explanations ranging from deep mantle plume to lithospheric extension and decompression melting of mantle upwelling by distal subduction tectonics. The Jeju volcanic field (JVF), being the closest late Cenozoic intraplate volcano to the subduction zone, sheds light on whether the intraplate volcanism is primarily plume-related or linked to plate tectonics. This study determined the primary magma composition for JVF basalts, using the most primitive bulk-rock samples (MgO > 8.5 wt%), by incrementally adding olivine to melt until reaching equilibrium with olivine (Mg# = 90) in the residual mantle. The estimated temperature and pressure of mantle melting are 1,466–1,587 °C and 2.1–4.1 GPa for anhydrous primary magma and 1,347–1,512 °C and 2.0–3.6 GPa for hydrous primary magma within the acceptable range of water contents (H2O = 2–4 wt%) reported from the Chinese intraplate basalts. The pressure estimates suggest that the minimal depth of the lithosphere-asthenosphere boundary is approximately ∼50–55 km. The mantle potential temperature for anhydrous primary magma is estimated to be 1,460–1,580 °C, higher than 1,300–1,400 °C of the ambient upper mantle, indicating a hot thermal regime below the JVF. Despite the absence of geophysical evidence for a mantle plume beneath the JVF, this study proposes that the hot mantle wedge is likely caused by the lateral influx or edge-driven convective upwelling of thermal plume near the leading edge of the stagnant Pacific Plate slab, contributing to the big mantle wedge. Intraplate volcanism in the JVF is proposed to be driven by lithospheric extension and decompression melting of the convective upwelling of hot sub-lithospheric mantle, influenced by distal subduction tectonics in the hot subduction zone. This model is supported by the present-day tectonics observed in the hot Ryukyu subduction zone, SW Japan.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
济州火山带下玄武岩火山活动的物理条件及其对地球动力学的影响
东北亚地区晚新生代板内火山的起源引发了争论,其解释包括深地幔羽流、岩石圈延伸以及远端俯冲构造对地幔上涌的减压熔化。济州火山场是最靠近俯冲带的晚新生代板内火山,它揭示了板内火山活动主要与地幔有关还是与板块构造有关。这项研究利用最原始的块岩样本(MgO > 8.5 wt%),通过向熔体中逐步添加橄榄石,直至与残余地幔中的橄榄石(Mg# = 90)达到平衡,确定了JVF玄武岩的主要岩浆成分。在中国板内玄武岩报告的可接受含水量(H2O = 2-4wt%)范围内,无水原生岩浆的地幔熔融温度和压力估计为 1,466-1,587 °C,2.1-4.1 GPa;含水原生岩浆的地幔熔融温度和压力估计为 1,347-1,512 °C,2.0-3.6 GPa。压力估计值表明岩石圈-岩石圈边界的最小深度约为~50-55 千米。据估计,无水原生岩浆的地幔势能温度为1,460-1,580 °C,高于环境上地幔的1,300-1,400 °C,这表明联合边界以下存在热制度。尽管没有地球物理证据表明联合边界下存在地幔羽流,但本研究提出,热地幔楔很可能是由停滞的太平洋板块板块前缘附近的热羽流横向流入或边缘驱动的对流上涌造成的,从而促成了大地幔楔。据推测,JVF 的板内火山活动是由岩石圈延伸和岩石圈下热地幔对流上涌的减压熔化所驱动的,并受到热俯冲带远端俯冲构造的影响。在日本西南部热琉球俯冲带观测到的现今构造作用为这一模型提供了支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geosciences Journal
Geosciences Journal 地学-地球科学综合
CiteScore
2.70
自引率
8.30%
发文量
33
审稿时长
6 months
期刊介绍: Geosciences Journal opens a new era for the publication of geoscientific research articles in English, covering geology, geophysics, geochemistry, paleontology, structural geology, mineralogy, petrology, stratigraphy, sedimentology, environmental geology, economic geology, petroleum geology, hydrogeology, remote sensing and planetary geology.
期刊最新文献
Age and relative uplift of marine terraces controlled by fault activities along the eastern coast of Korea Use of discharge variability, aquifer memory effect, and recession curve analysis in several springs to characterize karst aquifers in the tropical area Interpretation of geometry of greenstone belts and nature of fluid pathways for gold deposits using strain and vorticity analyses of shear zone – insights from Ramagiri-Penakacherla transcratonic shear zone system The Hupo Basin, a neotectonic piggyback basin on the eastern Korean margin Multi-archive record of late Quaternary paleoseismicity along the surface projection of the 2017 Pohang earthquake seismogenic fault, SE Korea
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1