Pub Date : 2024-09-12DOI: 10.1007/s12303-024-0040-2
Liyan Zhang, Ang Li
The Gulong Sag in the northern Songliao Basin, China, possesses abundant shale oil resources and represents a highly prospective area for shale oil exploration. However, the Qingshankou formation shale oil reservoir within this region exhibits characteristics such as thin longitudinal thickness, pronounced horizontal heterogeneity, limited frequency range, and significant anisotropy that pose difficulties in accurately predicting the “sweet spot” of shale oil within the target interval. The azimuthal anisotropy characteristics of the target layer in the Qingshankou formation are analyzed in this manuscript, utilizing wide-azimuth and small bin seismic data from the Y3 research area. Considering the limitations of existing methods for fitting elliptical velocities in azimuthal anisotropy correction, the influence of azimuthal anisotropy time difference on the non-in-phase superposition of seismic in-phase axis is eliminated by employing a non-rigid dynamic matching method, thereby enhancing the resolution and imaging accuracy of seismic data. The azimuth anisotropy correction effectively broadens the frequency range of the stack profile by 7 Hz, thereby enhancing the reliability of data for shale oil reservoir prediction in the study area.
{"title":"Study and application of wide-azimuth seismic anisotropy analysis and correction in shale reservoir in Gulong Sag, Songliao Basin, China","authors":"Liyan Zhang, Ang Li","doi":"10.1007/s12303-024-0040-2","DOIUrl":"https://doi.org/10.1007/s12303-024-0040-2","url":null,"abstract":"<p>The Gulong Sag in the northern Songliao Basin, China, possesses abundant shale oil resources and represents a highly prospective area for shale oil exploration. However, the Qingshankou formation shale oil reservoir within this region exhibits characteristics such as thin longitudinal thickness, pronounced horizontal heterogeneity, limited frequency range, and significant anisotropy that pose difficulties in accurately predicting the “sweet spot” of shale oil within the target interval. The azimuthal anisotropy characteristics of the target layer in the Qingshankou formation are analyzed in this manuscript, utilizing wide-azimuth and small bin seismic data from the Y3 research area. Considering the limitations of existing methods for fitting elliptical velocities in azimuthal anisotropy correction, the influence of azimuthal anisotropy time difference on the non-in-phase superposition of seismic in-phase axis is eliminated by employing a non-rigid dynamic matching method, thereby enhancing the resolution and imaging accuracy of seismic data. The azimuth anisotropy correction effectively broadens the frequency range of the stack profile by 7 Hz, thereby enhancing the reliability of data for shale oil reservoir prediction in the study area.</p>","PeriodicalId":12659,"journal":{"name":"Geosciences Journal","volume":"65 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1007/s12303-024-0039-8
Heonkyung Im, Seok-Jun Yang, Dongbok Shin, Ji-Hyun Lee, Eui-Jun Kim
Jumun Island is tectonostratigraphically situated on the marginal zone of the Gyeonggi Massif. The Massif is in contact with the southwestern margin of the Imjingang Belt and adjacent to Boreum Island, where ultramafic rock with magmatic Fe-Ti oxide deposits occurs. The northwest of Jumun Island, facing the Boreum ultramafic rock with Fe-Ti oxide ores, is composed of Precambrian Boreumdo schists containing a few magmatic intrusives, the exact ages of which are unknown. In Jumun, the ultramafic intrusion (Mg# = 75), which is confined to a narrow zone along the seaside, mainly consists of olivine (Fo = 81–82), amphibole (magnesio-horn-blende to tremolite), and phlogopite. The olivine is strongly serpentinized and encompassed by amphibole and phlogopite. The Ni-Cu sulfide mineralization found in the ultramafic rock is weak but has a typical assemblage of pyrrhotite-pentlandite-chalcopyrite with a small amount of magnetite. Notably, the Ni-Cu sulfides are closely associated with amphibole and phlogopite and are found in the fractures and interstitials of the olivine grains. The pyrrhotite (n = 2) and chalcopyrite (n = 1) are compositionally close to pure samples, whereas the pentlandite (n = 2) is characterized by enrichment with Co (up to 6.9 wt%). The sphalerite-bearing quartz vein cuts across the Precambrian gneissic rock and strikes N70 °W with an 80 °NE dip. This vein, which is traceable to a limited extent and approximately 40 cm wide, shows mineralogical zonation in the inward direction from pyrite to sphalerite-dominant. Consisting of sphalerite, pyrite, quartz, and chlorite with minor amounts of chalcopyrite, pyrrhotite, and pentlandite, it is composed of 9.56 wt% Zn with < 1.0 wt% As, Co, Cu, In, Mn, Ni, and Pb and below-detection limits (0.001 ppm) amounts of Bi, Ge, Mo, Se, Sb, Te, and W. Sphalerite, a principal ore mineral, is coarse-grained and reddish-brown and is composed of 57.3–58.8 wt% ZnS, 8.0–9.2 wt% FeS, and 32.0–32.4 wt% S with small amounts of Cu, Mn, As, and Cd. The recently discovered Ni-Cu sulfide mineralization and quartz vein with sphalerite, along with the linear array of magmatic Fe-Ti oxide deposits, provide conclusive evidence that the marginal zone of the Gyeonggi Massif may be a geologically favorable area for the formation of magmatic and magmatic-hydrothermal deposits. For exploration purposes, it is necessary to contextualize the source, tectonic setting, and magmatic evolution.
{"title":"First evidence of magmatic Ni-Cu sulfides and hydrothermal Zn mineralization in Jumun Island, central-western Korean peninsula","authors":"Heonkyung Im, Seok-Jun Yang, Dongbok Shin, Ji-Hyun Lee, Eui-Jun Kim","doi":"10.1007/s12303-024-0039-8","DOIUrl":"https://doi.org/10.1007/s12303-024-0039-8","url":null,"abstract":"<p>Jumun Island is tectonostratigraphically situated on the marginal zone of the Gyeonggi Massif. The Massif is in contact with the southwestern margin of the Imjingang Belt and adjacent to Boreum Island, where ultramafic rock with magmatic Fe-Ti oxide deposits occurs. The northwest of Jumun Island, facing the Boreum ultramafic rock with Fe-Ti oxide ores, is composed of Precambrian Boreumdo schists containing a few magmatic intrusives, the exact ages of which are unknown. In Jumun, the ultramafic intrusion (Mg# = 75), which is confined to a narrow zone along the seaside, mainly consists of olivine (Fo = 81–82), amphibole (magnesio-horn-blende to tremolite), and phlogopite. The olivine is strongly serpentinized and encompassed by amphibole and phlogopite. The Ni-Cu sulfide mineralization found in the ultramafic rock is weak but has a typical assemblage of pyrrhotite-pentlandite-chalcopyrite with a small amount of magnetite. Notably, the Ni-Cu sulfides are closely associated with amphibole and phlogopite and are found in the fractures and interstitials of the olivine grains. The pyrrhotite (n = 2) and chalcopyrite (n = 1) are compositionally close to pure samples, whereas the pentlandite (n = 2) is characterized by enrichment with Co (up to 6.9 wt%). The sphalerite-bearing quartz vein cuts across the Precambrian gneissic rock and strikes N70 °W with an 80 °NE dip. This vein, which is traceable to a limited extent and approximately 40 cm wide, shows mineralogical zonation in the inward direction from pyrite to sphalerite-dominant. Consisting of sphalerite, pyrite, quartz, and chlorite with minor amounts of chalcopyrite, pyrrhotite, and pentlandite, it is composed of 9.56 wt% Zn with < 1.0 wt% As, Co, Cu, In, Mn, Ni, and Pb and below-detection limits (0.001 ppm) amounts of Bi, Ge, Mo, Se, Sb, Te, and W. Sphalerite, a principal ore mineral, is coarse-grained and reddish-brown and is composed of 57.3–58.8 wt% ZnS, 8.0–9.2 wt% FeS, and 32.0–32.4 wt% S with small amounts of Cu, Mn, As, and Cd. The recently discovered Ni-Cu sulfide mineralization and quartz vein with sphalerite, along with the linear array of magmatic Fe-Ti oxide deposits, provide conclusive evidence that the marginal zone of the Gyeonggi Massif may be a geologically favorable area for the formation of magmatic and magmatic-hydrothermal deposits. For exploration purposes, it is necessary to contextualize the source, tectonic setting, and magmatic evolution.</p>","PeriodicalId":12659,"journal":{"name":"Geosciences Journal","volume":"1 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-07DOI: 10.1007/s12303-024-0038-9
Kyu Han Kim, Keisuke Nagao, Hirochika Sumino, Jong Ik Lee, Jisun Park
In order to constrain the granitic magma source at the northeastern continental margin of the Eurasian plate, noble gas isotopic ratios such as helium (3He/4He), argon (40Ar/36Ar) and neon (20Ne/22Ne, 21Ne/22Ne) were determined for Mesozoic quartz and biotite minerals from granitic rocks in the Korean peninsula. 3He/4He ratios in fluid inclusions of quartz samples have a wide range from 0.005 to 0.522 RA (av. 0.095 RA) and 0.013 to 1.27 RA (av. 0.37 RA) (RA =1.40 × 10−6, atmospheric value) for Jurassic (Daebo) and Cretaceous (Bulguksa) granites, respectively. The 3He/4He ratios clearly show a contribution of mantle-derived He to the granitic rock at the formation, then the helium has been deeply affected by accumulation of in situ produced radiogenic 4He and/or crustal helium. Although these ratios are lower than those of the subcontinental lithospheric mantle (SCLM) (6.1 ± 0.9 RA), mantle helium has been traced in these Mesozoic I-type granites from South Korea. The observations imply that the helium of SCLM source predominates over all of the Jurassic granites in South Korea and the Cretaceous granites in the Ogcheon belt (OB), and suggests that the granitic magma was derived from the partial melting product of SCLM materials with appreciable amounts of radiogenic helium. Meanwhile, Cretaceous granites were originated from igneous mantle source materials beneath the Gyeongsang basin, south-eastern area of the Korean peninsula. A presence of mantle components (20Ne/22Ne ≈ 10.13) and/or nucleogenic Ne were identified in some quartz and most biotite samples of granitoids in Jurassic age. Argon isotopic ratios (av. 40Ar/36Ar = 2370) of fluid inclusions in quartz for Jurassic granites are considerably higher than those in Cretaceous granites (av. 40Ar/36Ar = 414), indicating a clear aging effect. He-Ar isotopic signatures together with the characteristics of Nd, Sr, and O isotopes can lead to the conclusion that the generation of Jurassic granitic magma was responsible for the subduction of the Izanagi oceanic plate. Meanwhile, the subduction ridge (e.g., the Kula-Pacific Ridge) model is likely to be a suitable scenario for formation of the Cretaceous granitic magma in the Korean peninsula.
{"title":"He-Ar isotopic signatures of the Mesozoic granitoids in South Korea: implications for genesis of the granitic magma and crustal evolution in NE continental margin of the Eurasian plate","authors":"Kyu Han Kim, Keisuke Nagao, Hirochika Sumino, Jong Ik Lee, Jisun Park","doi":"10.1007/s12303-024-0038-9","DOIUrl":"https://doi.org/10.1007/s12303-024-0038-9","url":null,"abstract":"<p>In order to constrain the granitic magma source at the northeastern continental margin of the Eurasian plate, noble gas isotopic ratios such as helium (<sup>3</sup>He/<sup>4</sup>He), argon (<sup>40</sup>Ar/<sup>36</sup>Ar) and neon (<sup>20</sup>Ne/<sup>22</sup>Ne, <sup>21</sup>Ne/<sup>22</sup>Ne) were determined for Mesozoic quartz and biotite minerals from granitic rocks in the Korean peninsula. <sup>3</sup>He/<sup>4</sup>He ratios in fluid inclusions of quartz samples have a wide range from 0.005 to 0.522 R<sub>A</sub> (av. 0.095 R<sub>A</sub>) and 0.013 to 1.27 R<sub>A</sub> (av. 0.37 R<sub>A</sub>) (R<sub>A</sub> =1.40 × 10<sup>−6</sup>, atmospheric value) for Jurassic (Daebo) and Cretaceous (Bulguksa) granites, respectively. The <sup>3</sup>He/<sup>4</sup>He ratios clearly show a contribution of mantle-derived He to the granitic rock at the formation, then the helium has been deeply affected by accumulation of in situ produced radiogenic <sup>4</sup>He and/or crustal helium. Although these ratios are lower than those of the subcontinental lithospheric mantle (SCLM) (6.1 ± 0.9 R<sub>A</sub>), mantle helium has been traced in these Mesozoic I-type granites from South Korea. The observations imply that the helium of SCLM source predominates over all of the Jurassic granites in South Korea and the Cretaceous granites in the Ogcheon belt (OB), and suggests that the granitic magma was derived from the partial melting product of SCLM materials with appreciable amounts of radiogenic helium. Meanwhile, Cretaceous granites were originated from igneous mantle source materials beneath the Gyeongsang basin, south-eastern area of the Korean peninsula. A presence of mantle components (<sup>20</sup>Ne/<sup>22</sup>Ne ≈ 10.13) and/or nucleogenic Ne were identified in some quartz and most biotite samples of granitoids in Jurassic age. Argon isotopic ratios (av. <sup>40</sup>Ar/<sup>36</sup>Ar = 2370) of fluid inclusions in quartz for Jurassic granites are considerably higher than those in Cretaceous granites (av. <sup>40</sup>Ar/<sup>36</sup>Ar = 414), indicating a clear aging effect. He-Ar isotopic signatures together with the characteristics of Nd, Sr, and O isotopes can lead to the conclusion that the generation of Jurassic granitic magma was responsible for the subduction of the Izanagi oceanic plate. Meanwhile, the subduction ridge (e.g., the Kula-Pacific Ridge) model is likely to be a suitable scenario for formation of the Cretaceous granitic magma in the Korean peninsula.</p>","PeriodicalId":12659,"journal":{"name":"Geosciences Journal","volume":"8 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-19DOI: 10.1007/s12303-024-0036-y
Taehyung Kim, Jin-Hyuck Choi
Fault location and geometry are the most fundamental input data in seismic hazard analysis, the ultimate aim of which is to mitigate damage from future large earthquakes. In regions prone to large earthquakes or where cumulative deformation by multiple earthquake events are well expressed in the landscape, fault models are constructed primarily by (1) identifying active fault traces, mapped mostly by the surface ruptures associated with large earthquakes; (2) simplifying fault traces while capturing their geometrical characteristics; and (3) segmenting the simplified geometry, given that a single earthquake does not always rupture the entire length of a fault system. In slowly deforming regions, however, the construction of fault models is challenging, even though geologic records of large earthquakes exist, because of the lack of clear active fault traces. Indeed, surface-rupturing earthquakes may not be part of the historical periods owing to their long recurrence time of thousands of years or more. Nevertheless, seismic hazard analysis is required for densely populated and industrial areas in slowly deforming regions, such as South Korea. On the basis of criteria established previously for determining segmentation geometry in fault models, here we propose a methodology for identifying the segmentation geometry of strike-slip fault systems in slowly deforming regions. In terms of the criteria used to identify segment boundaries, we examine along-fault variations not only in fault geometry but also in fault-surrounding lithology and fault-related geomorphic features. We test the methodology for assessing the fault segmentation geometry in a case study of the Yangsan Fault, which is one of the most active seismogenic strike-slip faults on the Korean Peninsula. Results show that the ∼200 km length of the Yangsan Fault on land consists of 12 to 15 distinct fault segments. We discuss how models of fault segmentation geometry are able to improve seismic hazard analysis in regions that have not experienced surface-faulting earthquakes in historical period.
{"title":"Segmentation geometry of strike-slip fault systems in slow-deforming regions: a proposed method and case study of the Yangsan Fault, South Korea","authors":"Taehyung Kim, Jin-Hyuck Choi","doi":"10.1007/s12303-024-0036-y","DOIUrl":"https://doi.org/10.1007/s12303-024-0036-y","url":null,"abstract":"<p>Fault location and geometry are the most fundamental input data in seismic hazard analysis, the ultimate aim of which is to mitigate damage from future large earthquakes. In regions prone to large earthquakes or where cumulative deformation by multiple earthquake events are well expressed in the landscape, fault models are constructed primarily by (1) identifying active fault traces, mapped mostly by the surface ruptures associated with large earthquakes; (2) simplifying fault traces while capturing their geometrical characteristics; and (3) segmenting the simplified geometry, given that a single earthquake does not always rupture the entire length of a fault system. In slowly deforming regions, however, the construction of fault models is challenging, even though geologic records of large earthquakes exist, because of the lack of clear active fault traces. Indeed, surface-rupturing earthquakes may not be part of the historical periods owing to their long recurrence time of thousands of years or more. Nevertheless, seismic hazard analysis is required for densely populated and industrial areas in slowly deforming regions, such as South Korea. On the basis of criteria established previously for determining segmentation geometry in fault models, here we propose a methodology for identifying the segmentation geometry of strike-slip fault systems in slowly deforming regions. In terms of the criteria used to identify segment boundaries, we examine along-fault variations not only in fault geometry but also in fault-surrounding lithology and fault-related geomorphic features. We test the methodology for assessing the fault segmentation geometry in a case study of the Yangsan Fault, which is one of the most active seismogenic strike-slip faults on the Korean Peninsula. Results show that the ∼200 km length of the Yangsan Fault on land consists of 12 to 15 distinct fault segments. We discuss how models of fault segmentation geometry are able to improve seismic hazard analysis in regions that have not experienced surface-faulting earthquakes in historical period.</p>","PeriodicalId":12659,"journal":{"name":"Geosciences Journal","volume":"294 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1007/s12303-024-0030-4
Seongjun Lee, Jong-Won Han, Sangmin Ha, Jeong-Heon Choi, Yeong Bae Seong, Tae-Ho Lee, Hee-Cheol Kang, Moon Son
The 2017 Pohang earthquake (ML 5.4) ranks as the second-largest instrumental earthquake in the Korean Peninsula and the country’s most destructive seismic event. The earthquake history of the Pohang area prior to the 2017 event is unknown due to the absence of instrumental seismic activity and the lack of mapped Quaternary faults near the 2017 epicenter. The aim of the present study is to identify evidence for previous earthquake ruptures along the surface projection of the seismogenic fault and interpret their paleoseismic implications. The study involved comprehensive paleoseismological investigation, including geomorphic analysis, field-work, drillhole surveys, trench excavation, and numerical age dating. Geomorphic analysis and drillhole surveys revealed two lineaments presumed to have originated from Quaternary faulting: NNE-SSW-striking Fault-1 and NE-SW to NNE-SSW-striking Fault-2. At the excavation site of Fault-1, which is regarded as the seismogenic fault of the 2017 Pohang earthquake, stratigraphic features and numerical ages show that the penultimate event occurred between 11 ± 1 and 2.6 ± 0.1 ka and that the most recent event took place after 0.17 ± 0.01 ka. Combined results from two outcrops of Fault-2 give occurrence ages for the penultimate and most recent events of ca. 200 ka and between 148 ± 7 ka and the analytical limit of 14C dating (> 43,500 BP), respectively. Our findings reveal that at least three seismic events causing surface ruptures have occurred in the Pohang area during the late Quaternary before the 2017 Pohang earthquake.
2017 年浦项地震(ML 5.4)是朝鲜半岛第二大工具性地震,也是朝鲜最具破坏性的地震事件。由于 2017 年震中附近没有器震活动,也没有绘制第四纪断层图,因此 2017 年地震之前浦项地区的地震历史尚不清楚。本研究的目的是确定沿发震断层地表投影以往地震断裂的证据,并解释其对古地震的影响。研究涉及全面的古地震学调查,包括地貌分析、野外工作、钻孔勘测、沟槽挖掘和数值年代测定。地貌分析和钻孔勘测揭示了两条推测源于第四纪断层的线状构造:NNE-SSW 走向的断层-1 和 NNE-SSW 至 NNE-SSW 走向的断层-2。断层-1 被认为是 2017 年浦项地震的发震断层,在断层-1 的发掘现场,地层特征和数值年龄显示,倒数第二次事件发生在 11 ± 1 ka 到 2.6 ± 0.1 ka 之间,最近一次事件发生在 0.17 ± 0.01 ka 之后。根据断层-2 两个露头的综合结果,倒数第二和最近事件的发生年龄分别为约 200 ka 和 148 ± 7 ka 与 14C 测定的分析极限(> 43,500 BP)之间。我们的研究结果表明,在 2017 年浦项地震之前的第四纪晚期,浦项地区至少发生过三次导致地表断裂的地震事件。
{"title":"Multi-archive record of late Quaternary paleoseismicity along the surface projection of the 2017 Pohang earthquake seismogenic fault, SE Korea","authors":"Seongjun Lee, Jong-Won Han, Sangmin Ha, Jeong-Heon Choi, Yeong Bae Seong, Tae-Ho Lee, Hee-Cheol Kang, Moon Son","doi":"10.1007/s12303-024-0030-4","DOIUrl":"https://doi.org/10.1007/s12303-024-0030-4","url":null,"abstract":"<p>The 2017 Pohang earthquake (M<sub>L</sub> 5.4) ranks as the second-largest instrumental earthquake in the Korean Peninsula and the country’s most destructive seismic event. The earthquake history of the Pohang area prior to the 2017 event is unknown due to the absence of instrumental seismic activity and the lack of mapped Quaternary faults near the 2017 epicenter. The aim of the present study is to identify evidence for previous earthquake ruptures along the surface projection of the seismogenic fault and interpret their paleoseismic implications. The study involved comprehensive paleoseismological investigation, including geomorphic analysis, field-work, drillhole surveys, trench excavation, and numerical age dating. Geomorphic analysis and drillhole surveys revealed two lineaments presumed to have originated from Quaternary faulting: NNE-SSW-striking Fault-1 and NE-SW to NNE-SSW-striking Fault-2. At the excavation site of Fault-1, which is regarded as the seismogenic fault of the 2017 Pohang earthquake, stratigraphic features and numerical ages show that the penultimate event occurred between 11 ± 1 and 2.6 ± 0.1 ka and that the most recent event took place after 0.17 ± 0.01 ka. Combined results from two outcrops of Fault-2 give occurrence ages for the penultimate and most recent events of ca. 200 ka and between 148 ± 7 ka and the analytical limit of <sup>14</sup>C dating (> 43,500 BP), respectively. Our findings reveal that at least three seismic events causing surface ruptures have occurred in the Pohang area during the late Quaternary before the 2017 Pohang earthquake.</p>","PeriodicalId":12659,"journal":{"name":"Geosciences Journal","volume":"62 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1007/s12303-024-0031-3
Seung Ryeol Lee
The origin of the late Cenozoic intraplate volcanoes in the NE Asia has sparked debate, with explanations ranging from deep mantle plume to lithospheric extension and decompression melting of mantle upwelling by distal subduction tectonics. The Jeju volcanic field (JVF), being the closest late Cenozoic intraplate volcano to the subduction zone, sheds light on whether the intraplate volcanism is primarily plume-related or linked to plate tectonics. This study determined the primary magma composition for JVF basalts, using the most primitive bulk-rock samples (MgO > 8.5 wt%), by incrementally adding olivine to melt until reaching equilibrium with olivine (Mg# = 90) in the residual mantle. The estimated temperature and pressure of mantle melting are 1,466–1,587 °C and 2.1–4.1 GPa for anhydrous primary magma and 1,347–1,512 °C and 2.0–3.6 GPa for hydrous primary magma within the acceptable range of water contents (H2O = 2–4 wt%) reported from the Chinese intraplate basalts. The pressure estimates suggest that the minimal depth of the lithosphere-asthenosphere boundary is approximately ∼50–55 km. The mantle potential temperature for anhydrous primary magma is estimated to be 1,460–1,580 °C, higher than 1,300–1,400 °C of the ambient upper mantle, indicating a hot thermal regime below the JVF. Despite the absence of geophysical evidence for a mantle plume beneath the JVF, this study proposes that the hot mantle wedge is likely caused by the lateral influx or edge-driven convective upwelling of thermal plume near the leading edge of the stagnant Pacific Plate slab, contributing to the big mantle wedge. Intraplate volcanism in the JVF is proposed to be driven by lithospheric extension and decompression melting of the convective upwelling of hot sub-lithospheric mantle, influenced by distal subduction tectonics in the hot subduction zone. This model is supported by the present-day tectonics observed in the hot Ryukyu subduction zone, SW Japan.
{"title":"Physical conditions for basaltic volcanism beneath the Jeju volcanic field and the geodynamic implications","authors":"Seung Ryeol Lee","doi":"10.1007/s12303-024-0031-3","DOIUrl":"https://doi.org/10.1007/s12303-024-0031-3","url":null,"abstract":"<p>The origin of the late Cenozoic intraplate volcanoes in the NE Asia has sparked debate, with explanations ranging from deep mantle plume to lithospheric extension and decompression melting of mantle upwelling by distal subduction tectonics. The Jeju volcanic field (JVF), being the closest late Cenozoic intraplate volcano to the subduction zone, sheds light on whether the intraplate volcanism is primarily plume-related or linked to plate tectonics. This study determined the primary magma composition for JVF basalts, using the most primitive bulk-rock samples (MgO > 8.5 wt%), by incrementally adding olivine to melt until reaching equilibrium with olivine (Mg# = 90) in the residual mantle. The estimated temperature and pressure of mantle melting are 1,466–1,587 °C and 2.1–4.1 GPa for anhydrous primary magma and 1,347–1,512 °C and 2.0–3.6 GPa for hydrous primary magma within the acceptable range of water contents (H<sub>2</sub>O = 2–4 wt%) reported from the Chinese intraplate basalts. The pressure estimates suggest that the minimal depth of the lithosphere-asthenosphere boundary is approximately ∼50–55 km. The mantle potential temperature for anhydrous primary magma is estimated to be 1,460–1,580 °C, higher than 1,300–1,400 °C of the ambient upper mantle, indicating a hot thermal regime below the JVF. Despite the absence of geophysical evidence for a mantle plume beneath the JVF, this study proposes that the hot mantle wedge is likely caused by the lateral influx or edge-driven convective upwelling of thermal plume near the leading edge of the stagnant Pacific Plate slab, contributing to the big mantle wedge. Intraplate volcanism in the JVF is proposed to be driven by lithospheric extension and decompression melting of the convective upwelling of hot sub-lithospheric mantle, influenced by distal subduction tectonics in the hot subduction zone. This model is supported by the present-day tectonics observed in the hot Ryukyu subduction zone, SW Japan.</p>","PeriodicalId":12659,"journal":{"name":"Geosciences Journal","volume":"59 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.1007/s12303-024-0027-z
Jaeseoung Han, Jongwon Han, Dabeen Heo, Seongryong Kim, Sujin Lee, Min Hyug Koh, Jaeyeon Kim, Ki Baek Kwon, Byeong Seok Ahn, Youngjun Jeon, Kyeongjun Jo, Yeonjoo Lim, Sang-Jun Lee, Tae-Seob Kang, Junkee Rhie, Ungsan Ahn
Temporary seismic networks on Mt. Halla and Ulleung Island volcanoes were deployed, which employ broadband and geophone arrays to monitor potential volcanic activities and to estimate high-resolution magmatic structures beneath these volcanoes. The purpose of this paper is to introduce these networks and present early results through basic seismic analyses, suggesting the potential for future comprehensive seismological studies. The array in Mt. Halla volcano consists of five broadband sensors (JH array), and it has been operational around the Baengnokdam summit crater since October 2020. There was an additional linear geophone array (HL array) installed in September 2021 for detailed shallow subsurface imaging. Ulleung Island volcano had been under observation for two years since June 2021 with a network of nine broadband sensors (UL array) along its coast and in the Nari crater basin, complemented by a 52-geophone array (UG array) deployed in May 2022 for high-resolution subsurface studies. Despite the noisy environments typical of temporary setups, power spectral density analyses confirmed the quality of data as comparable to established reference noise models in permanent stations. Our study aimed to initiate studies uncovering seismic activities and structures beneath Mt. Halla and Ulleung Island volcanoes, specifically regarding volcanic activity. This approach detected no clear sign of volcanic seismicity on both islands, suggesting a period of magmatic dormancy. Seismic velocity variation (dv/v) analyses further indicated that environmental factors, rather than volcanic processes, influenced the changes in the physical properties of the underground structures. Conversely, the receiver function analysis and ambient noise data processing hinted at the presence of complex subsurface structures, potentially indicative of volcanic features, such as partial melting. Despite the lack of direct evidence for active magmatic processes, the collected seismic data provides a crucial baseline for future monitoring and a deeper understanding of the magmatic and tectonic dynamics beneath these volcanoes, offering valuable insights for ongoing volcanic research.
{"title":"Data and early results from temporary seismic arrays for monitoring and investigating magmatic processes beneath Mt. Halla and Ulleung Island volcanoes, South Korea","authors":"Jaeseoung Han, Jongwon Han, Dabeen Heo, Seongryong Kim, Sujin Lee, Min Hyug Koh, Jaeyeon Kim, Ki Baek Kwon, Byeong Seok Ahn, Youngjun Jeon, Kyeongjun Jo, Yeonjoo Lim, Sang-Jun Lee, Tae-Seob Kang, Junkee Rhie, Ungsan Ahn","doi":"10.1007/s12303-024-0027-z","DOIUrl":"https://doi.org/10.1007/s12303-024-0027-z","url":null,"abstract":"<p>Temporary seismic networks on Mt. Halla and Ulleung Island volcanoes were deployed, which employ broadband and geophone arrays to monitor potential volcanic activities and to estimate high-resolution magmatic structures beneath these volcanoes. The purpose of this paper is to introduce these networks and present early results through basic seismic analyses, suggesting the potential for future comprehensive seismological studies. The array in Mt. Halla volcano consists of five broadband sensors (JH array), and it has been operational around the Baengnokdam summit crater since October 2020. There was an additional linear geophone array (HL array) installed in September 2021 for detailed shallow subsurface imaging. Ulleung Island volcano had been under observation for two years since June 2021 with a network of nine broadband sensors (UL array) along its coast and in the Nari crater basin, complemented by a 52-geophone array (UG array) deployed in May 2022 for high-resolution subsurface studies. Despite the noisy environments typical of temporary setups, power spectral density analyses confirmed the quality of data as comparable to established reference noise models in permanent stations. Our study aimed to initiate studies uncovering seismic activities and structures beneath Mt. Halla and Ulleung Island volcanoes, specifically regarding volcanic activity. This approach detected no clear sign of volcanic seismicity on both islands, suggesting a period of magmatic dormancy. Seismic velocity variation (dv/v) analyses further indicated that environmental factors, rather than volcanic processes, influenced the changes in the physical properties of the underground structures. Conversely, the receiver function analysis and ambient noise data processing hinted at the presence of complex subsurface structures, potentially indicative of volcanic features, such as partial melting. Despite the lack of direct evidence for active magmatic processes, the collected seismic data provides a crucial baseline for future monitoring and a deeper understanding of the magmatic and tectonic dynamics beneath these volcanoes, offering valuable insights for ongoing volcanic research.</p>","PeriodicalId":12659,"journal":{"name":"Geosciences Journal","volume":"91 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141574877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this research, field studies, surface sediment samples, and laboratory studies were used to determine the textural and mineralogical characteristics of the sediments that originated from the salt domes of the northern coastal area of Hormuz Strait. In this way, were studied the texture and mineralogy of sediments. The main minerals of the sediments are quartz, calcite, feldspar, and clay. Pyroxene and Fe-bearing minerals are the main heavy minerals of studied sediments. The abundance of these minerals is determined by the mineralogy and creation of sediment of the source rocks. The presence of stable clay minerals indicates the re-entry into the sedimentary cycle, and unstable minerals indicate the initial diagenesis conditions of their mineralogical transformation in surface sediments. Thus, the presence of salt diapirs is the most important structural-tectonic phenomenon that has caused rock fractures and intensified the effect of weathering. On the other hand, dry weather has weakened the intensity and extent of chemical weathering processes, especially in clay minerals. However, the seasonal flooding hydrological system has caused dissolution and changes in soluble and unstable sediment components and introduced some minerals, such as illite, into the re-sedimentary cycle. In addition, the transport of sedimentary particles in waterways with the mechanism of seasonal flood waters has created a non-continuous transportation system. All these factors have caused the sediments originating from salt domes to be texturally bad sorted, platykurtic, and have to vary kurtosis affected by the presence and extent of source rock units.
{"title":"Textural and mineralogical characteristics of sediments originated from salt domes in the northern part of the Hormuz Strait","authors":"Tooba Jalali-Nezhad, Hamidreza Masoumi, Mohammadsadegh Dehghanian, Jamal Tarrah","doi":"10.1007/s12303-024-0025-1","DOIUrl":"https://doi.org/10.1007/s12303-024-0025-1","url":null,"abstract":"<p>In this research, field studies, surface sediment samples, and laboratory studies were used to determine the textural and mineralogical characteristics of the sediments that originated from the salt domes of the northern coastal area of Hormuz Strait. In this way, were studied the texture and mineralogy of sediments. The main minerals of the sediments are quartz, calcite, feldspar, and clay. Pyroxene and Fe-bearing minerals are the main heavy minerals of studied sediments. The abundance of these minerals is determined by the mineralogy and creation of sediment of the source rocks. The presence of stable clay minerals indicates the re-entry into the sedimentary cycle, and unstable minerals indicate the initial diagenesis conditions of their mineralogical transformation in surface sediments. Thus, the presence of salt diapirs is the most important structural-tectonic phenomenon that has caused rock fractures and intensified the effect of weathering. On the other hand, dry weather has weakened the intensity and extent of chemical weathering processes, especially in clay minerals. However, the seasonal flooding hydrological system has caused dissolution and changes in soluble and unstable sediment components and introduced some minerals, such as illite, into the re-sedimentary cycle. In addition, the transport of sedimentary particles in waterways with the mechanism of seasonal flood waters has created a non-continuous transportation system. All these factors have caused the sediments originating from salt domes to be texturally bad sorted, platykurtic, and have to vary kurtosis affected by the presence and extent of source rock units.</p>","PeriodicalId":12659,"journal":{"name":"Geosciences Journal","volume":"78 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141574876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.1007/s12303-024-0026-0
Hyunwoo Lee
In general, mantle-derived volatiles are mainly released into the atmosphere through volcanoes in mid-ocean ridges and subduction zones. However, relatively little attention has been paid to the emission of volatiles from continents on the Earth’s surface. It has recently been shown that significant amounts of gases such as carbon dioxide of mantle origin are emitted from continental rifts. Continental degassing has been reported in various ways around the world, however compared to mid-ocean ridges where the depleted upper mantle contributes significantly or arc volcanoes affected by subduction slabs, geochemical generalization is still in progress. In particular, in continental environments, other volatile sources may be added due to the distribution of the subcontinental lithospheric mantle. In the previously reported mantle xenolith samples, components such as noble gases are distinct from the mid-ocean ridge gases, and volcano/fault-related gases on some continents also showed different characteristics. Here, this work proposes representative values of volatiles of the lithosphere by synthesizing the geochemical data of gases emitted from the continent that have been reported until recently. In addition, this study provides a new perspective by considering the recently reported gas results from South Korea.
{"title":"Revisiting geochemical perspectives on degassing of the subcontinental lithospheric mantle","authors":"Hyunwoo Lee","doi":"10.1007/s12303-024-0026-0","DOIUrl":"https://doi.org/10.1007/s12303-024-0026-0","url":null,"abstract":"<p>In general, mantle-derived volatiles are mainly released into the atmosphere through volcanoes in mid-ocean ridges and subduction zones. However, relatively little attention has been paid to the emission of volatiles from continents on the Earth’s surface. It has recently been shown that significant amounts of gases such as carbon dioxide of mantle origin are emitted from continental rifts. Continental degassing has been reported in various ways around the world, however compared to mid-ocean ridges where the depleted upper mantle contributes significantly or arc volcanoes affected by subduction slabs, geochemical generalization is still in progress. In particular, in continental environments, other volatile sources may be added due to the distribution of the subcontinental lithospheric mantle. In the previously reported mantle xenolith samples, components such as noble gases are distinct from the mid-ocean ridge gases, and volcano/fault-related gases on some continents also showed different characteristics. Here, this work proposes representative values of volatiles of the lithosphere by synthesizing the geochemical data of gases emitted from the continent that have been reported until recently. In addition, this study provides a new perspective by considering the recently reported gas results from South Korea.</p>","PeriodicalId":12659,"journal":{"name":"Geosciences Journal","volume":"150 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141577843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-06DOI: 10.1007/s12303-024-0024-2
Tae-Ho Lee, Chang Woo Kwon, Ung San Ahn, Martin Danišík, Shinae Lee, Keewook Yi, Youn-Joong Jeong, Jeongmin Kim, Marcel Guillong
To constrain the timing of magma emplacement and eruption of volcanic rocks at Mt. Halla, Jeju Island, South Korea, a range of dating techniques (U-Pb, U-Th disequilibrium, and (U-Th)/He dating of zircon, and 40Ar/39Ar dating of groundmass) were applied to one trachyandesite sample and one trachyte sample. Trachyandesite sample CS92-7 from north of Mt. Halla yielded a homogeneous population of zircon U-Pb crystallization ages averaging 97 ± 3 ka and U-Th disequilibrium ages averaging 96.2 + 6.2/−10.6 ka. Both groundmass 40Ar/39Ar ages and zircon (U-Th)/He ages corrected for disequilibrium record the time of sample cooling, yielding ages of 105 ± 5 ka and 105.4 ± 4.0 ka, respectively. The nearly concordant crystallization and cooling ages are interpreted to document eruption of the sample shortly after its relatively rapid crystallization in the magma reservoir. The eruption age of this sample, based on the available geo- and thermochronological results, is estimated at 100.4 ± 7.6 ka. Trachyte sample SS35-23 from south of Mt. Halla yielded an overdispersed spectrum of zircon crystallization ages, suggesting protracted crystallization in the magma reservoir over a period of at least 140 ka. Weighted mean ages of 40.0 ± 5.9 ka and 39.4 ± 3.8 ka (determined from U-Pb and U-Th disequilibrium dating of the youngest coherent subpopulation, respectively), provide a maximum limit for the eruption age. The eruption age is directly constrained in this work at 32.4 ± 8.4 ka by (U-Th)/He data. The 40Ar/39Ar age of 54 ± 7 ka is distinctly different from the zircon crystallization and eruption ages, and is considered to be inaccurate due to a possible issue with sample contamination or excess argon. The combined geochronological methods applied in this study constrain the timing of zircon crystallization, magma residence, and eruption of volcanic rocks on Jeju Island, and provide essential information further improving our understanding of the chronological history of volcanic rocks on Jeju Island.
{"title":"A comparative study of different radiometric dating techniques applied to Quaternary volcanic rocks from Jeju Island, South Korea","authors":"Tae-Ho Lee, Chang Woo Kwon, Ung San Ahn, Martin Danišík, Shinae Lee, Keewook Yi, Youn-Joong Jeong, Jeongmin Kim, Marcel Guillong","doi":"10.1007/s12303-024-0024-2","DOIUrl":"https://doi.org/10.1007/s12303-024-0024-2","url":null,"abstract":"<p>To constrain the timing of magma emplacement and eruption of volcanic rocks at Mt. Halla, Jeju Island, South Korea, a range of dating techniques (U-Pb, U-Th disequilibrium, and (U-Th)/He dating of zircon, and <sup>40</sup>Ar/<sup>39</sup>Ar dating of groundmass) were applied to one trachyandesite sample and one trachyte sample. Trachyandesite sample CS92-7 from north of Mt. Halla yielded a homogeneous population of zircon U-Pb crystallization ages averaging 97 ± 3 ka and U-Th disequilibrium ages averaging 96.2 + 6.2/−10.6 ka. Both groundmass <sup>40</sup>Ar/<sup>39</sup>Ar ages and zircon (U-Th)/He ages corrected for disequilibrium record the time of sample cooling, yielding ages of 105 ± 5 ka and 105.4 ± 4.0 ka, respectively. The nearly concordant crystallization and cooling ages are interpreted to document eruption of the sample shortly after its relatively rapid crystallization in the magma reservoir. The eruption age of this sample, based on the available geo- and thermochronological results, is estimated at 100.4 ± 7.6 ka. Trachyte sample SS35-23 from south of Mt. Halla yielded an overdispersed spectrum of zircon crystallization ages, suggesting protracted crystallization in the magma reservoir over a period of at least 140 ka. Weighted mean ages of 40.0 ± 5.9 ka and 39.4 ± 3.8 ka (determined from U-Pb and U-Th disequilibrium dating of the youngest coherent subpopulation, respectively), provide a maximum limit for the eruption age. The eruption age is directly constrained in this work at 32.4 ± 8.4 ka by (U-Th)/He data. The <sup>40</sup>Ar/<sup>39</sup>Ar age of 54 ± 7 ka is distinctly different from the zircon crystallization and eruption ages, and is considered to be inaccurate due to a possible issue with sample contamination or excess argon. The combined geochronological methods applied in this study constrain the timing of zircon crystallization, magma residence, and eruption of volcanic rocks on Jeju Island, and provide essential information further improving our understanding of the chronological history of volcanic rocks on Jeju Island.</p>","PeriodicalId":12659,"journal":{"name":"Geosciences Journal","volume":"87 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141574878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}