{"title":"Environmentally tolerant conductive organohydrogel toward superior electromagnetic interference shielding and human motion detection","authors":"","doi":"10.1016/j.xcrp.2024.102109","DOIUrl":null,"url":null,"abstract":"<p>Flexible wearable devices require conductive hydrogels that can withstand extreme conditions. Yet, most strategies for improving environmental tolerance compromise other properties, including mechanical modulus and electromagnetic interference (EMI) shielding. Herein, we design polyvinyl alcohol/polypyrrole double-network organohydrogels with tunable EMI shielding and mechanical properties by introducing specific ions and glycerol. The synergistic effect of high-concentration “salting-in” ions and glycerol/water systems enables 3 M AlCl<sub>3</sub>-treated organohydrogels to exhibit exceptional environmental tolerance. These gels display excellent shielding performance above 40 dB and enhanced modulus-like human skin. Glycerol restores the mechanical properties deteriorated by “salting-in” ions, and AlCl<sub>3</sub> promotes ion migration to improve EMI shielding. Additionally, these organohydrogels can also serve as strain sensors, monitoring human motions and maintaining stable shielding (>25 dB) even after subzero treatment or long-term use. Overall, this work offers a generalizable strategy for fabricating multifunctional organohydrogels, paving the way for advancements in gel-based flexible wearable devices.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"45 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102109","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible wearable devices require conductive hydrogels that can withstand extreme conditions. Yet, most strategies for improving environmental tolerance compromise other properties, including mechanical modulus and electromagnetic interference (EMI) shielding. Herein, we design polyvinyl alcohol/polypyrrole double-network organohydrogels with tunable EMI shielding and mechanical properties by introducing specific ions and glycerol. The synergistic effect of high-concentration “salting-in” ions and glycerol/water systems enables 3 M AlCl3-treated organohydrogels to exhibit exceptional environmental tolerance. These gels display excellent shielding performance above 40 dB and enhanced modulus-like human skin. Glycerol restores the mechanical properties deteriorated by “salting-in” ions, and AlCl3 promotes ion migration to improve EMI shielding. Additionally, these organohydrogels can also serve as strain sensors, monitoring human motions and maintaining stable shielding (>25 dB) even after subzero treatment or long-term use. Overall, this work offers a generalizable strategy for fabricating multifunctional organohydrogels, paving the way for advancements in gel-based flexible wearable devices.
期刊介绍:
Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.