Practical Investigations of Wireless Multiple-Power Charging Unit for Electron Quench Detection Device in the Super High Field Superconducting Magnet

IF 1.1 3区 物理与天体物理 Q4 PHYSICS, APPLIED Journal of Low Temperature Physics Pub Date : 2024-07-24 DOI:10.1007/s10909-024-03187-x
Yoon Do Chung, Yong Chu, Jiseong Kim
{"title":"Practical Investigations of Wireless Multiple-Power Charging Unit for Electron Quench Detection Device in the Super High Field Superconducting Magnet","authors":"Yoon Do Chung,&nbsp;Yong Chu,&nbsp;Jiseong Kim","doi":"10.1007/s10909-024-03187-x","DOIUrl":null,"url":null,"abstract":"<div><p>A rapid and reliable quench detection is vital for high current superconducting magnet system to prevent irreversible damage to a magnet by the quench phenomenon. The method for detecting the occurrence of a resistive transition has been widely adopted in the superconducting magnet. In the case of the voltage monitoring by means of dedicated taps, the electron quench detection device (EQDD) conversion unit, which converts detected high voltages into voltage-drop signal, should be required in the superconducting high field magnet. The power source of traditional quench detecting system, which can monitor for superconducting magnet with middle power operation, is supplied through the power transformer since the transformer can provide galvanic isolation between circuits. On the other hand, in the case of the super high magnet systems such as Korea Superconducting Tokamak Advanced Research and International Thermonuclear experimental reactor, since the maximum operation current and voltage of the super high field magnet keep over 60 kA and 50 kV DC, a passive component, which has strong an isolation device and high dielectric resistor qualities, has been required in the super high field magnet. If the power transformer is adopted in the super high field magnet, it can cause high cost for volume capacity since it needs for higher dielectric resistance value over 500 MΩ. Authors proposed the wireless resonance antenna and multi-receiver coils which can keep high level of dielectric resistance value with stability. As well as, the wireless power charging unit can reduce system volume due to multi-charging receivers for one antenna. In this study, authors investigated the effect of inserted resonator (Sx) coil between antenna and receiver coils, as well as, evaluated the electric field and magnetic field among the resonance coils under 300 W 370 kHz RF power generator since the strong electro-magnetic fields by the resonance coils can affect the electron devices inside of the EQDD module.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"217 Part 4","pages":"358 - 365"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-024-03187-x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A rapid and reliable quench detection is vital for high current superconducting magnet system to prevent irreversible damage to a magnet by the quench phenomenon. The method for detecting the occurrence of a resistive transition has been widely adopted in the superconducting magnet. In the case of the voltage monitoring by means of dedicated taps, the electron quench detection device (EQDD) conversion unit, which converts detected high voltages into voltage-drop signal, should be required in the superconducting high field magnet. The power source of traditional quench detecting system, which can monitor for superconducting magnet with middle power operation, is supplied through the power transformer since the transformer can provide galvanic isolation between circuits. On the other hand, in the case of the super high magnet systems such as Korea Superconducting Tokamak Advanced Research and International Thermonuclear experimental reactor, since the maximum operation current and voltage of the super high field magnet keep over 60 kA and 50 kV DC, a passive component, which has strong an isolation device and high dielectric resistor qualities, has been required in the super high field magnet. If the power transformer is adopted in the super high field magnet, it can cause high cost for volume capacity since it needs for higher dielectric resistance value over 500 MΩ. Authors proposed the wireless resonance antenna and multi-receiver coils which can keep high level of dielectric resistance value with stability. As well as, the wireless power charging unit can reduce system volume due to multi-charging receivers for one antenna. In this study, authors investigated the effect of inserted resonator (Sx) coil between antenna and receiver coils, as well as, evaluated the electric field and magnetic field among the resonance coils under 300 W 370 kHz RF power generator since the strong electro-magnetic fields by the resonance coils can affect the electron devices inside of the EQDD module.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超高场超导磁体中电子淬火检测装置的无线多电源充电装置的实践研究
快速可靠的淬火检测对大电流超导磁体系统至关重要,可防止淬火现象对磁体造成不可逆转的损坏。超导磁体已广泛采用电阻转变发生时的检测方法。在通过专用抽头进行电压监测的情况下,超导高磁场磁体中需要安装电子淬火检测装置(EQDD)转换单元,将检测到的高电压转换为压降信号。传统淬火检测系统的电源可监测中功率运行的超导磁体,由于变压器可提供电路之间的电隔离,因此电源通过电源变压器提供。另一方面,在韩国超导托卡马克先进研究和国际热核实验反应堆等超高磁体系统中,由于超高磁场磁体的最大工作电流和电压保持在 60 kA 和 50 kV DC 以上,因此需要在超高磁场磁体中使用具有强隔离装置和高介电电阻品质的无源元件。如果在超高磁场磁体中采用电源变压器,由于需要 500 MΩ 以上的较高介电电阻值,会导致批量生产成本较高。作者提出了无线谐振天 线和多接收器线圈,它们可以稳定地保持较高的介电电阻值。此外,由于一个天线有多个充电接收器,无线充电装置可以减少系统体积。在这项研究中,作者研究了在天线和接收器线圈之间插入谐振(Sx)线圈的影响,并评估了在 300 W 370 kHz 射频发电机下谐振线圈之间的电场和磁场,因为谐振线圈产生的强电磁场会影响 EQDD 模块内部的电子器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Low Temperature Physics
Journal of Low Temperature Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
25.00%
发文量
245
审稿时长
1 months
期刊介绍: The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.
期刊最新文献
Enhanced Stability of Self-Bound Droplets in Quasi-One Dimension via Interspecies Quantum Fluctuations in Ultracold Bose–Bose Mixtures Superconductivity in Alkali Metal-Deposited Monolayer BC: MBC (M = Na, K) On the Superstatistical Properties of the Klein-Gordon Oscillator Using Gamma, Log, and F Distributions The Magnetic Microbolometer Detection Chain: A Proposed Detection System to Observe the B Modes of the Cosmic Microwave Background Tutorial: From Topology to Hall Effects—Implications of Berry Phase Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1