Improvement of Helium Liquefaction Performance Based on the Temperature-Distributed Regenerative Refrigeration Method Using 3He Fluid

IF 1.1 3区 物理与天体物理 Q4 PHYSICS, APPLIED Journal of Low Temperature Physics Pub Date : 2025-01-04 DOI:10.1007/s10909-024-03262-3
Qiang Cao, Lichun Ge, Miaomiao Wang, Yuji Chen, Pengcheng Wang, Zhiping Wang, Peng Li, Qinyu Zhao, Bo Wang, Zhihua Gan
{"title":"Improvement of Helium Liquefaction Performance Based on the Temperature-Distributed Regenerative Refrigeration Method Using 3He Fluid","authors":"Qiang Cao,&nbsp;Lichun Ge,&nbsp;Miaomiao Wang,&nbsp;Yuji Chen,&nbsp;Pengcheng Wang,&nbsp;Zhiping Wang,&nbsp;Peng Li,&nbsp;Qinyu Zhao,&nbsp;Bo Wang,&nbsp;Zhihua Gan","doi":"10.1007/s10909-024-03262-3","DOIUrl":null,"url":null,"abstract":"<div><p>Liquid helium has important applications in infrared wavelength detection, superconducting quantum interference, and so on. Regenerative refrigerators are generally applied for small-scale applications. However, the liquefaction efficiency of helium is not high. The main reason is the contradiction between the large sensible heat load and the limited refrigeration efficiency at 4.2 K. A novel method of temperature-distributed regenerative refrigeration, which generates the refrigeration power over a wide temperature range based on real gas effects, is theoretically studied using the <sup>3</sup>He working fluid for the first time. The liquefaction rate and efficiency of helium is improved because of a smaller entropy generation with this temperature-distributed method. The temperature-distributed refrigeration power of the <sup>3</sup>He working fluid is larger than that of <sup>4</sup>He when the absolute pressure is smaller, because the critical pressure of <sup>3</sup>He is lower; while such a refrigeration power of <sup>3</sup>He distributes at a lower temperature range that of <sup>4</sup>He at the same reduced pressure because the critical temperature of <sup>3</sup>He is lower. The liquefaction rate reaches 50.5 L/d when the cold-end refrigeration power is 1.5 W. This rate is 2–3 times that of liquefying with only the cold end with <sup>4</sup>He or <sup>3</sup>He. Furthermore, the liquefaction efficiency (FOM) increases with the rise in pressure. The theoretical FOM is 47.7% at a reduced pressure of 61.7 (14.1 MPa), which is a 7% improvement over the case with <sup>4</sup>He (44.7%). These results demonstrate advantages of using the temperature-distributed method with <sup>3</sup>He, thus opening up a new avenue for further researches in helium liquefaction systems.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"218 3-4","pages":"305 - 323"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-024-03262-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Liquid helium has important applications in infrared wavelength detection, superconducting quantum interference, and so on. Regenerative refrigerators are generally applied for small-scale applications. However, the liquefaction efficiency of helium is not high. The main reason is the contradiction between the large sensible heat load and the limited refrigeration efficiency at 4.2 K. A novel method of temperature-distributed regenerative refrigeration, which generates the refrigeration power over a wide temperature range based on real gas effects, is theoretically studied using the 3He working fluid for the first time. The liquefaction rate and efficiency of helium is improved because of a smaller entropy generation with this temperature-distributed method. The temperature-distributed refrigeration power of the 3He working fluid is larger than that of 4He when the absolute pressure is smaller, because the critical pressure of 3He is lower; while such a refrigeration power of 3He distributes at a lower temperature range that of 4He at the same reduced pressure because the critical temperature of 3He is lower. The liquefaction rate reaches 50.5 L/d when the cold-end refrigeration power is 1.5 W. This rate is 2–3 times that of liquefying with only the cold end with 4He or 3He. Furthermore, the liquefaction efficiency (FOM) increases with the rise in pressure. The theoretical FOM is 47.7% at a reduced pressure of 61.7 (14.1 MPa), which is a 7% improvement over the case with 4He (44.7%). These results demonstrate advantages of using the temperature-distributed method with 3He, thus opening up a new avenue for further researches in helium liquefaction systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Low Temperature Physics
Journal of Low Temperature Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
25.00%
发文量
245
审稿时长
1 months
期刊介绍: The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.
期刊最新文献
Exploring BiSn Sphere Attachment of Absorbers for Gamma-Ray TES Giant Effective g Factor and Low Effective Mass in \(Pb_{1-x}Sn_{x}Te\): Effect of Strong Spin-Orbit Interaction and Band Inversion Improvement of Helium Liquefaction Performance Based on the Temperature-Distributed Regenerative Refrigeration Method Using 3He Fluid Microstructure and Properties of Superconducting Tungsten Thin Films: Influence of Substrate Temperature and Annealing temperature Synthesis and Characterization of an Ag:Er Alloy for Metallic Magnetic Calorimeters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1