J. A. Martín-Martín, M. P. González-Marcos, A. Aranzabal, J. R. González-Velasco, E. Finocchio
{"title":"Promotion of Different Active Phases in MnOX-CeO2 Catalysts for Simultaneous NO Reduction and o-DCB Oxidation","authors":"J. A. Martín-Martín, M. P. González-Marcos, A. Aranzabal, J. R. González-Velasco, E. Finocchio","doi":"10.1007/s11244-024-01995-9","DOIUrl":null,"url":null,"abstract":"<p>MnO<sub>X</sub>-CeO<sub>2</sub> catalysts with different Mn and Ce content were prepared to evaluate the effect of metal content on catalytic properties and activity in the simultaneous NO reduction and o-DCB oxidation, in order to elucidate the most active species for the process. Catalytic properties were evaluated by ICP-AES, XRD, skeletal FTIR, STEM-HAADF, XPS, N<sub>2</sub>-physisorption, H<sub>2</sub>-TPR, NH<sub>3</sub>-TPD and pyridine-FTIR. Catalysts with 85%Mn and 15%Ce molar content have been found to be the most active. Their excellent catalytic performance is related to the coexistence of Mn in different phases, i.e., Mn species strongly interacting with Ce and segregated Mn species. The effect of the preparation methods has also been deeply investigated: Co-precipitation method (CP) leads to Mn segregation as Mn<sub>2</sub>O<sub>3</sub>, whereas sol-gel preparation method (SG) promotes the formation of an amorphous powder. The synergy between segregated Mn<sub>2</sub>O<sub>3</sub> species and Mn species in high interaction with Ce (resulting in a mixed oxide phase) leads to the presence of Mn with different oxidation states. This effect, together with the high oxygen mobility caused by structural defects, enhances redox, acidic and oxidative properties. The improvement of catalytic properties with Mn content also favors NO reduction side-reactions, with N<sub>2</sub>O and NO<sub>2</sub> being the most important by-products, whereas it limits the production of chlorinated organic by-products in o-DCB oxidation.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"39 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11244-024-01995-9","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
MnOX-CeO2 catalysts with different Mn and Ce content were prepared to evaluate the effect of metal content on catalytic properties and activity in the simultaneous NO reduction and o-DCB oxidation, in order to elucidate the most active species for the process. Catalytic properties were evaluated by ICP-AES, XRD, skeletal FTIR, STEM-HAADF, XPS, N2-physisorption, H2-TPR, NH3-TPD and pyridine-FTIR. Catalysts with 85%Mn and 15%Ce molar content have been found to be the most active. Their excellent catalytic performance is related to the coexistence of Mn in different phases, i.e., Mn species strongly interacting with Ce and segregated Mn species. The effect of the preparation methods has also been deeply investigated: Co-precipitation method (CP) leads to Mn segregation as Mn2O3, whereas sol-gel preparation method (SG) promotes the formation of an amorphous powder. The synergy between segregated Mn2O3 species and Mn species in high interaction with Ce (resulting in a mixed oxide phase) leads to the presence of Mn with different oxidation states. This effect, together with the high oxygen mobility caused by structural defects, enhances redox, acidic and oxidative properties. The improvement of catalytic properties with Mn content also favors NO reduction side-reactions, with N2O and NO2 being the most important by-products, whereas it limits the production of chlorinated organic by-products in o-DCB oxidation.
期刊介绍:
Topics in Catalysis publishes topical collections in all fields of catalysis which are composed only of invited articles from leading authors. The journal documents today’s emerging and critical trends in all branches of catalysis. Each themed issue is organized by renowned Guest Editors in collaboration with the Editors-in-Chief. Proposals for new topics are welcome and should be submitted directly to the Editors-in-Chief.
The publication of individual uninvited original research articles can be sent to our sister journal Catalysis Letters. This journal aims for rapid publication of high-impact original research articles in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.