Ajay Kumar, Eun Joo Park, Yu Seung Kim, Jacob S. Spendelow
{"title":"Surface Functionalization of Carbon Black for PEM Fuel Cell Electrodes","authors":"Ajay Kumar, Eun Joo Park, Yu Seung Kim, Jacob S. Spendelow","doi":"10.1002/macp.202400092","DOIUrl":null,"url":null,"abstract":"<p>Carbon-based materials are extensively used in fuel cell applications due to their crucial role in maintaining high performance. Particularly, carbon black (CB) stands out as a preferred electrode material for fuel cells, owing to its high electrical conductivity and large surface area. This review focuses on the functionalization of CB and its use as a support for Pt-based catalysts in proton exchange membrane fuel cells. Functionalization strategies include oxidation, covalent functionalization, as well as polymer grafting or impregnation. Various approaches to functionalize the CB surface are discussed that effectively tailor the surface properties of electrodes, leading to improved fuel cell performance. The improvements are seen in enhanced dispersibility of catalyst particles, better ionomer distribution, increased catalyst stability, and reduced carbon corrosion. This review provides an overview of various modifications applied to CB to enhance their structural and electrochemical properties, thereby boosting fuel cell performance.</p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"225 18","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/macp.202400092","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Chemistry and Physics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400092","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon-based materials are extensively used in fuel cell applications due to their crucial role in maintaining high performance. Particularly, carbon black (CB) stands out as a preferred electrode material for fuel cells, owing to its high electrical conductivity and large surface area. This review focuses on the functionalization of CB and its use as a support for Pt-based catalysts in proton exchange membrane fuel cells. Functionalization strategies include oxidation, covalent functionalization, as well as polymer grafting or impregnation. Various approaches to functionalize the CB surface are discussed that effectively tailor the surface properties of electrodes, leading to improved fuel cell performance. The improvements are seen in enhanced dispersibility of catalyst particles, better ionomer distribution, increased catalyst stability, and reduced carbon corrosion. This review provides an overview of various modifications applied to CB to enhance their structural and electrochemical properties, thereby boosting fuel cell performance.
期刊介绍:
Macromolecular Chemistry and Physics publishes in all areas of polymer science - from chemistry, physical chemistry, and physics of polymers to polymers in materials science. Beside an attractive mixture of high-quality Full Papers, Trends, and Highlights, the journal offers a unique article type dedicated to young scientists – Talent.