首页 > 最新文献

Macromolecular Chemistry and Physics最新文献

英文 中文
Issue Information: Macromol. Chem. Phys. 3/2025
IF 2.5 4区 化学 Q3 POLYMER SCIENCE Pub Date : 2025-02-06 DOI: 10.1002/macp.202570006
{"title":"Issue Information: Macromol. Chem. Phys. 3/2025","authors":"","doi":"10.1002/macp.202570006","DOIUrl":"https://doi.org/10.1002/macp.202570006","url":null,"abstract":"","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"226 3","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/macp.202570006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143248599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: Macromol. Chem. Phys. 3/2025
IF 2.5 4区 化学 Q3 POLYMER SCIENCE Pub Date : 2025-02-06 DOI: 10.1002/macp.202570005

{"title":"Front Cover: Macromol. Chem. Phys. 3/2025","authors":"","doi":"10.1002/macp.202570005","DOIUrl":"https://doi.org/10.1002/macp.202570005","url":null,"abstract":"<p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"226 3","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/macp.202570005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143248600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: Macromol. Chem. Phys. 2/2025
IF 2.5 4区 化学 Q3 POLYMER SCIENCE Pub Date : 2025-01-23 DOI: 10.1002/macp.202570003

{"title":"Front Cover: Macromol. Chem. Phys. 2/2025","authors":"","doi":"10.1002/macp.202570003","DOIUrl":"https://doi.org/10.1002/macp.202570003","url":null,"abstract":"<p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"226 2","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/macp.202570003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Macromol. Chem. Phys. 2/2025
IF 2.5 4区 化学 Q3 POLYMER SCIENCE Pub Date : 2025-01-23 DOI: 10.1002/macp.202570004
{"title":"Issue Information: Macromol. Chem. Phys. 2/2025","authors":"","doi":"10.1002/macp.202570004","DOIUrl":"https://doi.org/10.1002/macp.202570004","url":null,"abstract":"","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"226 2","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/macp.202570004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: Macromol. Chem. Phys. 1/2025
IF 2.5 4区 化学 Q3 POLYMER SCIENCE Pub Date : 2025-01-09 DOI: 10.1002/macp.202570001

{"title":"Front Cover: Macromol. Chem. Phys. 1/2025","authors":"","doi":"10.1002/macp.202570001","DOIUrl":"https://doi.org/10.1002/macp.202570001","url":null,"abstract":"<p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"226 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/macp.202570001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143113578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Macromol. Chem. Phys. 1/2025
IF 2.5 4区 化学 Q3 POLYMER SCIENCE Pub Date : 2025-01-09 DOI: 10.1002/macp.202570002
{"title":"Issue Information: Macromol. Chem. Phys. 1/2025","authors":"","doi":"10.1002/macp.202570002","DOIUrl":"https://doi.org/10.1002/macp.202570002","url":null,"abstract":"","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"226 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/macp.202570002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143110490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
“Grafting to” Rubber Composite for Elastic Dielectric Material
IF 2.5 4区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-12-27 DOI: 10.1002/macp.202400364
Dinda Bazliah, Qi-An Hong, Livy Laysandra, Yu-Cheng Chiu

In addition to traditional rubber applications, 1,4-cis-polyisoprene (cis-PI) has been utilized in wearable electronics. While synthetic PI typically exhibits lower durability compared to natural rubber (NR), high-molecular-weight cis-PI compensates by offering improved mechanical properties and chemical resistance. The group proposes using a commercial cis-PI with high molecular weight of 250 000 g mol−1 (PI250K-C) grafted onto modified nanoparticle structures including silicon dioxide (mSiO2), rutile titanium dioxide (mRTiO2), and anatase titanium dioxide (mATiO2) as an insulator in organic field effect transistors (OFETs) due to its naturally low dielectric constant. The nanoparticles are pretreated with a coupling agent to improve adhesion and prevent aggregation. Rubber composite films, designated X%-mY-PI250K-C (where X = 10, 20, 30% and Y = mSiO2, mRTiO2, mATiO2), are fabricated using sulfur vulcanization. The modified films demonstrate excellent mechanical stress (1.15 ± 0.1 MPa) and elasticity, enduring 50 loading–unloading cycles without residual strain. In contrast, rubber composites produced from simple blending show half the mechanical stress at 0.7 ± 0.3 MPa, which is attributed to nanoparticle agglomeration observed in SEM and EDX results. Additionally, mRTiO2 nanoparticles significantly increase the dielectric constant of PI250K-C from 2.12 to 12.93, enhancing electrical performance for TFT applications. This study underscores the effectiveness of the “grafting to” approach for producing robust rubber composites, highlighting the importance of nanoparticle selection and fabrication precision for stretchable organic electronics.

{"title":"“Grafting to” Rubber Composite for Elastic Dielectric Material","authors":"Dinda Bazliah,&nbsp;Qi-An Hong,&nbsp;Livy Laysandra,&nbsp;Yu-Cheng Chiu","doi":"10.1002/macp.202400364","DOIUrl":"https://doi.org/10.1002/macp.202400364","url":null,"abstract":"<p>In addition to traditional rubber applications, 1,4-cis-polyisoprene (<i>cis</i>-PI) has been utilized in wearable electronics. While synthetic PI typically exhibits lower durability compared to natural rubber (NR), high-molecular-weight <i>cis</i>-PI compensates by offering improved mechanical properties and chemical resistance. The group proposes using a commercial <i>cis-</i>PI with high molecular weight of 250 000 g mol<sup>−1</sup> (PI<sub>250K-C</sub>) grafted onto modified nanoparticle structures including silicon dioxide (<i>m</i>SiO<sub>2</sub>), rutile titanium dioxide (<i>m</i>RTiO<sub>2</sub>), and anatase titanium dioxide (<i>m</i>ATiO<sub>2</sub>) as an insulator in organic field effect transistors (OFETs) due to its naturally low dielectric constant. The nanoparticles are pretreated with a coupling agent to improve adhesion and prevent aggregation. Rubber composite films, designated X%-<i>m</i>Y-PI<sub>250K-C</sub> (where X = 10, 20, 30% and Y = <i>m</i>SiO<sub>2</sub>, <i>m</i>RTiO<sub>2</sub>, <i>m</i>ATiO<sub>2</sub>), are fabricated using sulfur vulcanization. The modified films demonstrate excellent mechanical stress (1.15 ± 0.1 MPa) and elasticity, enduring 50 loading–unloading cycles without residual strain. In contrast, rubber composites produced from simple blending show half the mechanical stress at 0.7 ± 0.3 MPa, which is attributed to nanoparticle agglomeration observed in SEM and EDX results. Additionally, <i>m</i>RTiO<sub>2</sub> nanoparticles significantly increase the dielectric constant of PI<sub>250K-C</sub> from 2.12 to 12.93, enhancing electrical performance for TFT applications. This study underscores the effectiveness of the “grafting to” approach for producing robust rubber composites, highlighting the importance of nanoparticle selection and fabrication precision for stretchable organic electronics.</p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"226 3","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143253558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Chain Dispersity on the Stability of Frank–Kasper Phases Self-Assembled from Diblock Copolymers
IF 2.5 4区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-12-23 DOI: 10.1002/macp.202400393
Chi To Lai, An-Chang Shi

The effect of chain dispersity on the relative stability of Frank–Kasper (FK) phases self-assembled from diblock copolymers (DBCPs) is studied using self-consistent field theory applied to DBCPs with one disperse block obeying the Poisson or Schulz–Zimm distributions. The results demonstrate that the chain dispersity enhances the relative stability of the FK phases. For DBCPs with small conformational asymmetry, the FK σ$sigma$ phase can be stabilized by dispersity and the stability window of the FK phases widens with the increase of dispersity. For DBCPs with large conformational asymmetry, the Laves C14 and C15 phases, which are metastable in monodisperse DBCPs, can be stabilized by dispersity. An analysis of the spatial organization of polymers reveals that the enhanced stability of the FK phases originated from intra- and inter-domain segregation of chains with different lengths.

{"title":"Effects of Chain Dispersity on the Stability of Frank–Kasper Phases Self-Assembled from Diblock Copolymers","authors":"Chi To Lai,&nbsp;An-Chang Shi","doi":"10.1002/macp.202400393","DOIUrl":"https://doi.org/10.1002/macp.202400393","url":null,"abstract":"<p>The effect of chain dispersity on the relative stability of Frank–Kasper (FK) phases self-assembled from diblock copolymers (DBCPs) is studied using self-consistent field theory applied to DBCPs with one disperse block obeying the Poisson or Schulz–Zimm distributions. The results demonstrate that the chain dispersity enhances the relative stability of the FK phases. For DBCPs with small conformational asymmetry, the FK <span></span><math>\u0000 <semantics>\u0000 <mi>σ</mi>\u0000 <annotation>$sigma$</annotation>\u0000 </semantics></math> phase can be stabilized by dispersity and the stability window of the FK phases widens with the increase of dispersity. For DBCPs with large conformational asymmetry, the Laves C14 and C15 phases, which are metastable in monodisperse DBCPs, can be stabilized by dispersity. An analysis of the spatial organization of polymers reveals that the enhanced stability of the FK phases originated from intra- and inter-domain segregation of chains with different lengths.</p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"226 3","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/macp.202400393","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143253073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal Conductivity Hydroxylated Boron Nitride/Polyurethane/Polyvinyl Alcohol Composite Nanofiber Film Prepared by Electrospinning
IF 2.5 4区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-12-23 DOI: 10.1002/macp.202400365
Guan zhi Zhao, Ruijie Ma, Yunjie Yin

As functional composite materials rapidly develop, the insufficient thermal conductivity of polymer materials to meet application requirements is becoming increasingly apparent. In this work, electrospinning is employed to prepare hydroxylated boron nitride nanosheet (OH-BNNSs)/water-based polyurethane (WPU)/polyvinyl alcohol (PVA) composite nanofiber membranes with good thermal conductivity. When the content of OH-BNNSs is 10 wt.%, the thermal conductivity of the OH-BNNS/PVA/WPU composite nanofiber membrane can reach 0.629 W (mK)−1, with yield strength, ultimate tensile strength, and elastic modulus of ≈3.85, ≈5.87, and ≈35.22 MPa, respectively. The results indicate that the OH-BNNS/WPU/PVA composite nanofiber membrane exhibits good thermal conductivity and outstanding hydrophilicity. When the content of OH-BNNSs is appropriate, the composite membrane also demonstrates good mechanical properties, showing significant potential in the field of thermally conductive polymer materials.

{"title":"Thermal Conductivity Hydroxylated Boron Nitride/Polyurethane/Polyvinyl Alcohol Composite Nanofiber Film Prepared by Electrospinning","authors":"Guan zhi Zhao,&nbsp;Ruijie Ma,&nbsp;Yunjie Yin","doi":"10.1002/macp.202400365","DOIUrl":"https://doi.org/10.1002/macp.202400365","url":null,"abstract":"<p>As functional composite materials rapidly develop, the insufficient thermal conductivity of polymer materials to meet application requirements is becoming increasingly apparent. In this work, electrospinning is employed to prepare hydroxylated boron nitride nanosheet (OH-BNNSs)/water-based polyurethane (WPU)/polyvinyl alcohol (PVA) composite nanofiber membranes with good thermal conductivity. When the content of OH-BNNSs is 10 wt.%, the thermal conductivity of the OH-BNNS/PVA/WPU composite nanofiber membrane can reach 0.629 W (mK)<sup>−1</sup>, with yield strength, ultimate tensile strength, and elastic modulus of ≈3.85, ≈5.87, and ≈35.22 MPa, respectively. The results indicate that the OH-BNNS/WPU/PVA composite nanofiber membrane exhibits good thermal conductivity and outstanding hydrophilicity. When the content of OH-BNNSs is appropriate, the composite membrane also demonstrates good mechanical properties, showing significant potential in the field of thermally conductive polymer materials.</p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"226 3","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143253072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: Macromol. Chem. Phys. 24/2024 封面:Macromol.Chem.24/2024
IF 2.5 4区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-12-20 DOI: 10.1002/macp.202470048

Front Cover: In article 2400331, Tatsuo Maruyama and co-workers report clickable plastic surfaces with controllable azide surface density by the simple dip-coating method. The surfaces can easily immobilize functional molecules with alkyne groups via strain-promoted azide-alkyne cycloaddition. They succeed in preparing a linear surface gradient of azide group density and also in micropatterning the surfaces by microcontact printing.

封面:在文章2400331中,Tatsuo Maruyama及其同事报告了通过简单的浸没涂层方法,具有可控叠氮化物表面密度的可点击塑料表面。通过应变促进叠氮化物-炔烃环加成,可以很容易地将功能分子固定在炔基上。他们成功地制备了叠氮化物基团密度的线性表面梯度,并通过微接触印刷在表面上进行了微图案化。
{"title":"Front Cover: Macromol. Chem. Phys. 24/2024","authors":"","doi":"10.1002/macp.202470048","DOIUrl":"https://doi.org/10.1002/macp.202470048","url":null,"abstract":"<p><b>Front Cover</b>: In article 2400331, Tatsuo Maruyama and co-workers report clickable plastic surfaces with controllable azide surface density by the simple dip-coating method. The surfaces can easily immobilize functional molecules with alkyne groups via strain-promoted azide-alkyne cycloaddition. They succeed in preparing a linear surface gradient of azide group density and also in micropatterning the surfaces by microcontact printing.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"225 24","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/macp.202470048","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Macromolecular Chemistry and Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1