The origin and migration laws of hydrocarbons in uranium-bearing Luohe Formation, Pengyang area, SW Ordos Basin

IF 1.4 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Geological Journal Pub Date : 2024-07-24 DOI:10.1002/gj.5017
Qinghong Si, Xueming Teng, Qiang Zhu, Jianguo Li, Hualei Zhao, Guoming Wang, Haikui Tong, Hongliang Dang
{"title":"The origin and migration laws of hydrocarbons in uranium-bearing Luohe Formation, Pengyang area, SW Ordos Basin","authors":"Qinghong Si,&nbsp;Xueming Teng,&nbsp;Qiang Zhu,&nbsp;Jianguo Li,&nbsp;Hualei Zhao,&nbsp;Guoming Wang,&nbsp;Haikui Tong,&nbsp;Hongliang Dang","doi":"10.1002/gj.5017","DOIUrl":null,"url":null,"abstract":"<p>The hydrocarbon activity in Pengyang area, situated in the southwestern Ordos Basin, is notably prominent. Investigation on the migration laws of hydrocarbons is imperative for comprehending the involvement in uranium mineralization. Based on the analysis of spatial distribution of hydrocarbon containing fluid and hydrocarbon generation conditions of sandstone in the Luohe Formation, the organic geochemical characteristics including hydrocarbon components, carbon isotopes and biomarker compounds were analysed. The research results indicate that: (1) hydrocarbon fluid activities in the Luohe Formation are predominantly observed in layers exhibiting higher uranium mineralization. The mudstone of the Luohe Formation had low organic matter content and low thermal maturity, which was not conducive to hydrocarbon generation. (2) Hydrocarbon-containing fluid in the sandstone of Luohe Formation not only contained reducing gases such as methane and hydrogen but also chloroform asphalt components. The carbon isotopes of hydrocarbon in sandstone inform Luohe Formation resemble oil and gas in the Mesozoic. The biomarker parameter inferred that the parent rock of hydrocarbons in the Luohe Formation was formed under reducing and freshwater conditions, and hydrocarbon generation occurred at the mature stage. As above mentioned, a comparison was carried out between the affinity of hydrocarbon-containing fluid in the Luohe Formation and different layers of hydrocarbon source rocks. The migration behaviour of hydrocarbon-containing fluid in the Pengyang area has been summarized, and the involvement of hydrocarbon-containing fluid in uranium mineralization has been discussed. The main concepts are as follows: the sedimentary environment and thermal evolution conditions of hydrocarbons in the sandstone of Luohe Formation resemble those of the primary hydrocarbon source rocks in the Yanchang Formation. The main hydrocarbon charging events in the Luohe Formation occurred before the Late Cretaceous period, which is primarily related to two hydrocarbon generation events from 130 to 100 Ma in the Yanchang Formation and fault conduits connecting the Triassic to the Cretaceous Strata. The hydrocarbon-containing fluid released from Yanchang Formation migrating to the Luohe Formation provides reducing conditions for the precipitation of uranium in oxygen-bearing water bodies.</p>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":"59 10","pages":"2703-2719"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gj.5017","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The hydrocarbon activity in Pengyang area, situated in the southwestern Ordos Basin, is notably prominent. Investigation on the migration laws of hydrocarbons is imperative for comprehending the involvement in uranium mineralization. Based on the analysis of spatial distribution of hydrocarbon containing fluid and hydrocarbon generation conditions of sandstone in the Luohe Formation, the organic geochemical characteristics including hydrocarbon components, carbon isotopes and biomarker compounds were analysed. The research results indicate that: (1) hydrocarbon fluid activities in the Luohe Formation are predominantly observed in layers exhibiting higher uranium mineralization. The mudstone of the Luohe Formation had low organic matter content and low thermal maturity, which was not conducive to hydrocarbon generation. (2) Hydrocarbon-containing fluid in the sandstone of Luohe Formation not only contained reducing gases such as methane and hydrogen but also chloroform asphalt components. The carbon isotopes of hydrocarbon in sandstone inform Luohe Formation resemble oil and gas in the Mesozoic. The biomarker parameter inferred that the parent rock of hydrocarbons in the Luohe Formation was formed under reducing and freshwater conditions, and hydrocarbon generation occurred at the mature stage. As above mentioned, a comparison was carried out between the affinity of hydrocarbon-containing fluid in the Luohe Formation and different layers of hydrocarbon source rocks. The migration behaviour of hydrocarbon-containing fluid in the Pengyang area has been summarized, and the involvement of hydrocarbon-containing fluid in uranium mineralization has been discussed. The main concepts are as follows: the sedimentary environment and thermal evolution conditions of hydrocarbons in the sandstone of Luohe Formation resemble those of the primary hydrocarbon source rocks in the Yanchang Formation. The main hydrocarbon charging events in the Luohe Formation occurred before the Late Cretaceous period, which is primarily related to two hydrocarbon generation events from 130 to 100 Ma in the Yanchang Formation and fault conduits connecting the Triassic to the Cretaceous Strata. The hydrocarbon-containing fluid released from Yanchang Formation migrating to the Luohe Formation provides reducing conditions for the precipitation of uranium in oxygen-bearing water bodies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鄂尔多斯盆地西南部彭阳地区含铀漯河地层中碳氢化合物的成因及迁移规律
位于鄂尔多斯盆地西南部的彭阳地区油气活动十分突出。研究碳氢化合物的迁移规律对于理解铀矿化的参与至关重要。在分析漯河地层含烃流体空间分布和砂岩生烃条件的基础上,分析了烃组分、碳同位素和生物标志化合物等有机地球化学特征。研究结果表明(1) 漯河地层中的烃类流体活动主要出现在铀矿化程度较高的地层中。漯河地层的泥岩有机质含量低,热成熟度低,不利于碳氢化合物的生成。(2)漯河地层砂岩中的含烃流体不仅含有甲烷、氢气等还原性气体,还含有氯仿沥青成分。漯河地层砂岩中碳氢化合物的碳同位素与中生代油气相似。根据生物标志物参数推断,漯河地层中碳氢化合物的母岩是在还原性淡水条件下形成的,碳氢化合物的生成发生在成熟阶段。如上所述,对漯河地层含烃流体与不同层位烃源岩的亲和性进行了比较。总结了彭阳地区含烃流体的迁移行为,讨论了含烃流体参与铀矿化的问题。主要观点如下:漯河地层砂岩中碳氢化合物的沉积环境和热演化条件与延长地层原生烃源岩相似。漯河地层的主要烃充注事件发生在晚白垩世之前,主要与延长地层 130~100 Ma 的两次烃生成事件和连接三叠系与白垩系地层的断层导管有关。延长地层释放的含烃流体迁移到漯河地层,为含氧水体中铀的沉淀提供了还原条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geological Journal
Geological Journal 地学-地球科学综合
CiteScore
4.20
自引率
11.10%
发文量
269
审稿时长
3 months
期刊介绍: In recent years there has been a growth of specialist journals within geological sciences. Nevertheless, there is an important role for a journal of an interdisciplinary kind. Traditionally, GEOLOGICAL JOURNAL has been such a journal and continues in its aim of promoting interest in all branches of the Geological Sciences, through publication of original research papers and review articles. The journal publishes Special Issues with a common theme or regional coverage e.g. Chinese Dinosaurs; Tectonics of the Eastern Mediterranean, Triassic basins of the Central and North Atlantic Borderlands). These are extensively cited. The Journal has a particular interest in publishing papers on regional case studies from any global locality which have conclusions of general interest. Such papers may emphasize aspects across the full spectrum of geological sciences.
期刊最新文献
Issue Information Issue Information Reply to Comment on “Singh R, Vadlamani R, Bajpai S & Maurya AS (2024) Strontium Isotope Stratigraphy of Marine Oligocene–Miocene Sedimentary Successions of Kutch Basin, Western India. Geological Journal, 1–20. DOI: 10.1002/gj.4961” Fabrics and Origin of Troctolites in the Keketoukeleke Ultramafic–Mafic Complex, South Altyn Tagh, Northwest China Comment on “Singh R, Vadlamani R, Bajpai S, Maurya AS (2024) Strontium Isotope Stratigraphy of Marine Oligocene–Miocene Sedimentary Successions of Kutch Basin, Western India. Geological Journal, 1–20. DOI: 10.1002/gj.4961”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1