Maximizing Output Power in p–n Junction Betavoltaic Batteries via Monte Carlo and Physics-Based Compact Model Cosimulation

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Nuclear Science Pub Date : 2024-07-25 DOI:10.1109/TNS.2024.3433571
Houjun He;Yuncheng Han;Xiaoyu Wang;Lei Ren;Xiangdong Meng;Mingjie Zheng
{"title":"Maximizing Output Power in p–n Junction Betavoltaic Batteries via Monte Carlo and Physics-Based Compact Model Cosimulation","authors":"Houjun He;Yuncheng Han;Xiaoyu Wang;Lei Ren;Xiangdong Meng;Mingjie Zheng","doi":"10.1109/TNS.2024.3433571","DOIUrl":null,"url":null,"abstract":"Betavoltaic nuclear batteries show promise as compact and enduring power sources for microelectromechanical systems (MEMS). Current theoretical calculations often overlook practical diode characteristics like surface recombination (S), bulk recombination within the space-charge region (R-SCR), series resistance (\n<inline-formula> <tex-math>$R_{s}$ </tex-math></inline-formula>\n), and shunt resistance (\n<inline-formula> <tex-math>$R_{\\text {sh}}$ </tex-math></inline-formula>\n), resulting in significant discrepancies between theoretical predictions and experimental outcomes, with differences in \n<inline-formula> <tex-math>$J_{\\text {SC}}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$V_{\\text {OC}}$ </tex-math></inline-formula>\n, or converter efficiency up to ten-fold. To address this, a practical diode model, integrating these practical characteristics, is developed via Monte Carlo and physics-based compact model cosimulation. We quantitatively analyze the differential impacts and synergistic effects of these practical characteristics on \n<inline-formula> <tex-math>$J_{\\text {SC}}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$V_{\\text {OC}}$ </tex-math></inline-formula>\n, FF, and \n<inline-formula> <tex-math>$P_{\\text {out}}$ </tex-math></inline-formula>\n, highlighting the detrimental effects of S, R-SCR, and \n<inline-formula> <tex-math>$R_{s}$ </tex-math></inline-formula>\n, while emphasizing the beneficial role of \n<inline-formula> <tex-math>$R_{\\text {sh}}$ </tex-math></inline-formula>\n. Further analysis of the degree of influence of S, \n<inline-formula> <tex-math>$R_{s}$ </tex-math></inline-formula>\n, and \n<inline-formula> <tex-math>$R_{\\text {sh}}$ </tex-math></inline-formula>\n on output power reveals a priority ranking order of \n<inline-formula> <tex-math>$R_{s}$ </tex-math></inline-formula>\n, S, and \n<inline-formula> <tex-math>$R_{\\text {sh}}$ </tex-math></inline-formula>\n for Si-based batteries, and S, \n<inline-formula> <tex-math>$R_{\\text {sh}}$ </tex-math></inline-formula>\n, and \n<inline-formula> <tex-math>$R_{s}$ </tex-math></inline-formula>\n for SiC-based batteries. This approach effectively bridges the theoretical–experimental gap, evidenced by J–V curves closely matching tested batteries and minute relative errors of −0.8% to 0.6% between \n<inline-formula> <tex-math>$P_{\\text {out}}$ </tex-math></inline-formula>\n values and their tested counterparts, emphasizing its accuracy in predictions. We predict output performance across material qualities, obtaining achievable powers of 16.82 and \n<inline-formula> <tex-math>$73.90~{\\mathrm {nW/cm^{2}}}$ </tex-math></inline-formula>\n for planar Si- and SiC-based batteries, and evaluate the quality levels of current batteries. Furthermore, our model can forecast the performance of 3-D batteries by incorporating an extended electron–hole pair (EHP) generation rate model into 3-D structures, achieving \n<inline-formula> <tex-math>$28~\\mu $ </tex-math></inline-formula>\nW/cm3 for the \n<inline-formula> <tex-math>${}^{63}$ </tex-math></inline-formula>\nNi–Si-based multilayer battery, surpassing planar silicon and suitable for MEMS applications.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"71 12","pages":"2515-2529"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nuclear Science","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10609452/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Betavoltaic nuclear batteries show promise as compact and enduring power sources for microelectromechanical systems (MEMS). Current theoretical calculations often overlook practical diode characteristics like surface recombination (S), bulk recombination within the space-charge region (R-SCR), series resistance ( $R_{s}$ ), and shunt resistance ( $R_{\text {sh}}$ ), resulting in significant discrepancies between theoretical predictions and experimental outcomes, with differences in $J_{\text {SC}}$ , $V_{\text {OC}}$ , or converter efficiency up to ten-fold. To address this, a practical diode model, integrating these practical characteristics, is developed via Monte Carlo and physics-based compact model cosimulation. We quantitatively analyze the differential impacts and synergistic effects of these practical characteristics on $J_{\text {SC}}$ , $V_{\text {OC}}$ , FF, and $P_{\text {out}}$ , highlighting the detrimental effects of S, R-SCR, and $R_{s}$ , while emphasizing the beneficial role of $R_{\text {sh}}$ . Further analysis of the degree of influence of S, $R_{s}$ , and $R_{\text {sh}}$ on output power reveals a priority ranking order of $R_{s}$ , S, and $R_{\text {sh}}$ for Si-based batteries, and S, $R_{\text {sh}}$ , and $R_{s}$ for SiC-based batteries. This approach effectively bridges the theoretical–experimental gap, evidenced by J–V curves closely matching tested batteries and minute relative errors of −0.8% to 0.6% between $P_{\text {out}}$ values and their tested counterparts, emphasizing its accuracy in predictions. We predict output performance across material qualities, obtaining achievable powers of 16.82 and $73.90~{\mathrm {nW/cm^{2}}}$ for planar Si- and SiC-based batteries, and evaluate the quality levels of current batteries. Furthermore, our model can forecast the performance of 3-D batteries by incorporating an extended electron–hole pair (EHP) generation rate model into 3-D structures, achieving $28~\mu $ W/cm3 for the ${}^{63}$ Ni–Si-based multilayer battery, surpassing planar silicon and suitable for MEMS applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过蒙特卡洛和基于物理的紧凑模型协同模拟,最大化 P-N 结光伏电池的输出功率*
倍他伏打核电池有望成为微型机电系统(MEMS)的紧凑和持久的电源。目前的理论计算经常忽略实际二极管的特性,如表面复合(S),空间电荷区域内的大块复合(R-SCR),串联电阻($R_{S}$)和分流电阻($R_{\text {sh}}$),导致理论预测和实验结果之间存在显着差异,差异在$J_{\text {SC}}$, $V_{\text {OC}}$,或转换器效率高达十倍。为了解决这个问题,通过蒙特卡罗和基于物理的紧凑模型联合仿真,开发了一个集成这些实际特性的实用二极管模型。我们定量分析了这些实用特征对$J_{\text {SC}}$、$V_{\text {OC}}$、FF和$P_{\text {out}}$的差异影响和协同效应,强调了S、R-SCR和$R_{S}$的不利影响,同时强调了$R_{\text {sh}}$的有利作用。进一步分析S、$R_{S}$和$R_{\text {sh}}$对输出功率的影响程度,得出硅基电池的优先级顺序为$R_{S}$、S和$R_{\text {sh}}$,硅基电池的优先级顺序为$R_{\text {sh}}$,硅基电池的优先级顺序为$R_{\text {sh}}$和$R_{S}$。这种方法有效地弥合了理论与实验之间的差距,J-V曲线与测试电池非常匹配,$P_{\text {out}}$值与测试电池之间的相对误差为- 0.8%至0.6%,强调了其预测的准确性。我们预测了不同材料质量的输出性能,获得了平面硅基和硅基电池的可实现功率分别为16.82和73.90~{\ mathm {nW/cm^{2}}}$,并评估了当前电池的质量水平。此外,我们的模型可以通过将扩展的电子-空穴对(EHP)生成速率模型结合到三维结构中来预测三维电池的性能,对于${}^{63}$ ni - si基多层电池实现$28~\mu $ W/cm3,超过平面硅,适合MEMS应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Nuclear Science
IEEE Transactions on Nuclear Science 工程技术-工程:电子与电气
CiteScore
3.70
自引率
27.80%
发文量
314
审稿时长
6.2 months
期刊介绍: The IEEE Transactions on Nuclear Science is a publication of the IEEE Nuclear and Plasma Sciences Society. It is viewed as the primary source of technical information in many of the areas it covers. As judged by JCR impact factor, TNS consistently ranks in the top five journals in the category of Nuclear Science & Technology. It has one of the higher immediacy indices, indicating that the information it publishes is viewed as timely, and has a relatively long citation half-life, indicating that the published information also is viewed as valuable for a number of years. The IEEE Transactions on Nuclear Science is published bimonthly. Its scope includes all aspects of the theory and application of nuclear science and engineering. It focuses on instrumentation for the detection and measurement of ionizing radiation; particle accelerators and their controls; nuclear medicine and its application; effects of radiation on materials, components, and systems; reactor instrumentation and controls; and measurement of radiation in space.
期刊最新文献
2024 Index IEEE Transactions on Nuclear Science Vol. 71 Table of Contents Affiliate Plan of the IEEE Nuclear and Plasma Sciences Society IEEE Transactions on Nuclear Science publication information Search for Editor-in-Chief
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1