Achieving unlinkability in fingerprint templates via k-anonymity and random projection

Debanjan Sadhya
{"title":"Achieving unlinkability in fingerprint templates via k-anonymity and random projection","authors":"Debanjan Sadhya","doi":"10.1007/s12046-024-02571-3","DOIUrl":null,"url":null,"abstract":"<p>Biometric template protection schemes are designed to provide specific security guarantees to biometric traits. However, most of these schemes do not address the unlinkability requirement (viz., multiple biometric templates should be independent of each other) from the theoretical vantage point. This study proposes a mechanism for storing fingerprint templates in an unlikable manner by hiding them within fixed-sized groups. The core of our model is based on the notion of <i>k</i>-anonymity, which guarantees that the biometric template of a particular subject remains concealed among the templates of other <span>\\(k-1\\)</span> subjects. The resulting anonymized features ensure that the identity of the subject does not get revealed under any circumstance, thereby preventing cross-matching or linking-based attacks within different applications. We have formally analyzed our model by quantifying the degree of anonymization of the fingerprint templates in the form of a metric having range [0, 1]. The entire scheme remains non-invertible due to the generalization of the fingerprint features. We have performed extensive empirical evaluations of our model over four benchmark fingerprint databases, for which we obtained EERs that are comparable to that in the stolen-token scenario. Hence our work introduces an approach for securing biometric databases in a provable manner.</p>","PeriodicalId":21498,"journal":{"name":"Sādhanā","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sādhanā","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12046-024-02571-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biometric template protection schemes are designed to provide specific security guarantees to biometric traits. However, most of these schemes do not address the unlinkability requirement (viz., multiple biometric templates should be independent of each other) from the theoretical vantage point. This study proposes a mechanism for storing fingerprint templates in an unlikable manner by hiding them within fixed-sized groups. The core of our model is based on the notion of k-anonymity, which guarantees that the biometric template of a particular subject remains concealed among the templates of other \(k-1\) subjects. The resulting anonymized features ensure that the identity of the subject does not get revealed under any circumstance, thereby preventing cross-matching or linking-based attacks within different applications. We have formally analyzed our model by quantifying the degree of anonymization of the fingerprint templates in the form of a metric having range [0, 1]. The entire scheme remains non-invertible due to the generalization of the fingerprint features. We have performed extensive empirical evaluations of our model over four benchmark fingerprint databases, for which we obtained EERs that are comparable to that in the stolen-token scenario. Hence our work introduces an approach for securing biometric databases in a provable manner.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 K 匿名和随机投影实现指纹模板的不可链接性
生物识别模板保护方案旨在为生物识别特征提供特定的安全保证。然而,这些方案大多没有从理论上解决不可链接的要求(即多个生物识别模板应相互独立)。本研究提出了一种机制,通过将指纹模板隐藏在固定大小的组中,以不可取的方式存储指纹模板。我们模型的核心是基于 k-anonymity 概念,它保证了特定对象的生物特征模板仍然隐藏在其他(k-1)个对象的模板中。由此产生的匿名特征可确保在任何情况下都不会泄露主体身份,从而防止不同应用中的交叉匹配或基于链接的攻击。我们通过量化指纹模板的匿名化程度,以范围为 [0, 1] 的度量形式正式分析了我们的模型。由于指纹特征的通用性,整个方案仍然是不可逆转的。我们在四个基准指纹数据库中对我们的模型进行了广泛的实证评估,得到的 EER 与被盗令牌情况下的 EER 相当。因此,我们的工作引入了一种以可证明的方式确保生物识别数据库安全的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Buckling performance optimization of sub-stiffened composite panels with straight and curvilinear sub-stiffeners Transformer-based Pouranic topic classification in Indian mythology Influence of non-stoichiometric solutions on the THF hydrate growth: chemical affinity modelling and visualization Development and analysis of Hastelloy-X alloy butt joint made by laser beam welding Comparative analysis of a remotely-controlled wetland paddy seeder and conventional drum seeder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1