{"title":"Buckling performance optimization of sub-stiffened composite panels with straight and curvilinear sub-stiffeners","authors":"HAMDA CHAGRAOUI, MOHAMED SOULA","doi":"10.1007/s12046-024-02601-0","DOIUrl":null,"url":null,"abstract":"<p>This paper studies the buckling behavior of T-shaped composite stiffened panels reinforced by both straight and curvilinear sub-stiffening configurations subjected to compression. First, the simulated buckling response of the T-shaped stiffened composite panel is verified with experimental results from the existing literature. Subsequently, straight and curvilinear I-shaped sub-stiffeners are introduced into the design of the T-shaped stiffened composite panel. The distribution and laminate stacking sequence of straight and curvilinear sub-stiffened composite panels are optimized to improve buckling performance while maintaining a constant weight constraint. Further, a parametric analysis was implemented to assess the influence of the sub-stiffener curvature on the buckling response of the curvilinear grid sub-stiffened composite panel. Results demonstrate that introducing straight and curvilinear grid sub-stiffeners into the T-shaped stiffened composite panel improves buckling performance. Specifically, the introduction of straight sub-stiffeners results in a remarkable improvement of up to 200% in buckling performance, while introducing curvilinear grid sub-stiffeners exhibits an even more noteworthy improvement of up to 260%, which shows the superior design of curvilinear grid sub-stiffeners when compared to straight sub-stiffeners. This investigation delivers valuable insights into the design of sub-stiffened composite panels for improving structural performance, offering significant advantages for industries such as aerospace that require lightweight structures yet are resistant to buckling.</p>","PeriodicalId":21498,"journal":{"name":"Sādhanā","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sādhanā","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12046-024-02601-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the buckling behavior of T-shaped composite stiffened panels reinforced by both straight and curvilinear sub-stiffening configurations subjected to compression. First, the simulated buckling response of the T-shaped stiffened composite panel is verified with experimental results from the existing literature. Subsequently, straight and curvilinear I-shaped sub-stiffeners are introduced into the design of the T-shaped stiffened composite panel. The distribution and laminate stacking sequence of straight and curvilinear sub-stiffened composite panels are optimized to improve buckling performance while maintaining a constant weight constraint. Further, a parametric analysis was implemented to assess the influence of the sub-stiffener curvature on the buckling response of the curvilinear grid sub-stiffened composite panel. Results demonstrate that introducing straight and curvilinear grid sub-stiffeners into the T-shaped stiffened composite panel improves buckling performance. Specifically, the introduction of straight sub-stiffeners results in a remarkable improvement of up to 200% in buckling performance, while introducing curvilinear grid sub-stiffeners exhibits an even more noteworthy improvement of up to 260%, which shows the superior design of curvilinear grid sub-stiffeners when compared to straight sub-stiffeners. This investigation delivers valuable insights into the design of sub-stiffened composite panels for improving structural performance, offering significant advantages for industries such as aerospace that require lightweight structures yet are resistant to buckling.
本文研究了由直线和曲线次加固结构加固的 T 型加劲复合板在受压时的屈曲行为。首先,T 型加劲复合板的模拟屈曲响应与现有文献中的实验结果进行了验证。随后,在 T 型加劲复合材料面板的设计中引入了直线和曲线 I 型副加劲件。对直线和曲线次加劲复合材料板的分布和层叠顺序进行了优化,以改善屈曲性能,同时保持恒定的重量约束。此外,还进行了参数分析,以评估子加强筋曲率对曲线网格子加强复合板屈曲响应的影响。结果表明,在 T 型加劲复合材料面板中引入直线和曲线网格子加劲件可改善屈曲性能。具体来说,引入直线网格子加强筋后,屈曲性能显著提高了 200%,而引入曲线网格子加强筋后,屈曲性能更是显著提高了 260%,这表明曲线网格子加强筋的设计优于直线网格子加强筋。这项研究为改进结构性能的亚加强复合板设计提供了宝贵的见解,为航空航天等要求轻质结构和抗屈曲的行业提供了显著优势。