Hardware-Aware Bayesian Neural Architecture Search of Quantized CNNs

IF 2 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Embedded Systems Letters Pub Date : 2024-07-26 DOI:10.1109/LES.2024.3434379
Mathieu Perrin;William Guicquero;Bruno Paille;Gilles Sicard
{"title":"Hardware-Aware Bayesian Neural Architecture Search of Quantized CNNs","authors":"Mathieu Perrin;William Guicquero;Bruno Paille;Gilles Sicard","doi":"10.1109/LES.2024.3434379","DOIUrl":null,"url":null,"abstract":"Advances in neural architecture search (NAS) now provide a crucial assistance to design hardware-efficient neural networks (NNs). This letter presents NAS for resource-efficient, weight-quantized convolutional NNs (CNNs), under computational complexity constraints (model size and number of computations). Bayesian optimization is used to efficiently search for traceable CNN architectures within a continuous embedding space. This embedding is the latent space of a neural architecture autoencoder, regularized with a maximum mean discrepancy penalization and a convex latent predictor of parameters. On CIFAR-100, and without quantization, we obtain 75% test accuracy with less than 2.5M parameters and 600M operations. NAS experiments on STL-10 with 32, 8, and 4 bit weights outperform some high-end architectures while enabling drastic model size reduction (6 Mb–840 kb). It demonstrates our method’s ability to discover lightweight and high-performing models, while showcasing the importance of quantization to improve the tradeoff between accuracy and model size.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"17 1","pages":"42-45"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10611734/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in neural architecture search (NAS) now provide a crucial assistance to design hardware-efficient neural networks (NNs). This letter presents NAS for resource-efficient, weight-quantized convolutional NNs (CNNs), under computational complexity constraints (model size and number of computations). Bayesian optimization is used to efficiently search for traceable CNN architectures within a continuous embedding space. This embedding is the latent space of a neural architecture autoencoder, regularized with a maximum mean discrepancy penalization and a convex latent predictor of parameters. On CIFAR-100, and without quantization, we obtain 75% test accuracy with less than 2.5M parameters and 600M operations. NAS experiments on STL-10 with 32, 8, and 4 bit weights outperform some high-end architectures while enabling drastic model size reduction (6 Mb–840 kb). It demonstrates our method’s ability to discover lightweight and high-performing models, while showcasing the importance of quantization to improve the tradeoff between accuracy and model size.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量化 CNN 的硬件感知贝叶斯神经架构搜索
神经结构搜索(NAS)技术的进步为设计硬件高效的神经网络(nn)提供了重要帮助。这封信介绍了在计算复杂性约束(模型大小和计算次数)下,资源高效、权重量化的卷积神经网络(cnn)的NAS。利用贝叶斯优化在连续嵌入空间中高效地搜索可追踪的CNN架构。这种嵌入是神经结构自编码器的潜在空间,用最大平均差异惩罚和参数的凸潜在预测器进行正则化。在CIFAR-100上,在没有量化的情况下,我们可以在小于2.5M的参数和600M的操作下获得75%的测试精度。在STL-10上进行的具有32、8和4位权重的NAS实验优于一些高端架构,同时能够大幅减小模型大小(6 Mb-840 kb)。它展示了我们的方法发现轻量级和高性能模型的能力,同时展示了量化对改善精度和模型大小之间权衡的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
期刊最新文献
Table of Contents IEEE Embedded Systems Letters Publication Information Detecting Nonequivalence in Neural Networks Through In-Distribution Counterexample Generation The Upcoming Era of Specialized Models MdCSR: A Memory-Efficient Sparse Matrix Compression Format
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1