Visual detection of microRNAs using gold nanorod-based lateral flow nucleic acid biosensor and exonuclease III-assisted signal amplification

IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL Microchimica Acta Pub Date : 2024-07-27 DOI:10.1007/s00604-024-06557-0
Jing Zhang, Chao Yan, Guodong Liu
{"title":"Visual detection of microRNAs using gold nanorod-based lateral flow nucleic acid biosensor and exonuclease III-assisted signal amplification","authors":"Jing Zhang, Chao Yan, Guodong Liu","doi":"10.1007/s00604-024-06557-0","DOIUrl":null,"url":null,"abstract":"<p>An ultrasensitive method for the visual detection of microRNAs (miRNAs) in cell lysates using a gold nanorod-based lateral flow nucleic acid biosensor (GN-LFNAB) and exonuclease III (Exo III)-assisted signal amplification. The Exo III-catalyzed target recycling strategy is employed to generate a large number of single-strand DNA products, which can be detected by GN-LFNAB visually. With the implementation of a unique recycling strategy, we have demonstrated that the miRNA in the concentration as low as 0.5 pM can be detected without the need for instrumentation, providing a detection limit that surpasses previous reports. The new biosensor is ultrasensitive and can be applied to the reliable monitoring of miRNAs in cell lysates with high accuracy. The approach offers a simple and rapid tool for cancer diagnosis and clinical biomedicine, thanks to its flexibility, simplicity, cost-effectiveness, and convenience. This new method has the potential to significantly improve the detection and monitoring of cancer biomarkers, ultimately contributing to more effective cancer diagnosis and treatment.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00604-024-06557-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

An ultrasensitive method for the visual detection of microRNAs (miRNAs) in cell lysates using a gold nanorod-based lateral flow nucleic acid biosensor (GN-LFNAB) and exonuclease III (Exo III)-assisted signal amplification. The Exo III-catalyzed target recycling strategy is employed to generate a large number of single-strand DNA products, which can be detected by GN-LFNAB visually. With the implementation of a unique recycling strategy, we have demonstrated that the miRNA in the concentration as low as 0.5 pM can be detected without the need for instrumentation, providing a detection limit that surpasses previous reports. The new biosensor is ultrasensitive and can be applied to the reliable monitoring of miRNAs in cell lysates with high accuracy. The approach offers a simple and rapid tool for cancer diagnosis and clinical biomedicine, thanks to its flexibility, simplicity, cost-effectiveness, and convenience. This new method has the potential to significantly improve the detection and monitoring of cancer biomarkers, ultimately contributing to more effective cancer diagnosis and treatment.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于金纳米棒的横向流核酸生物传感器和外切酶 III 辅助信号放大技术,对 microRNA 进行可视化检测
利用基于金纳米棒的横向流核酸生物传感器(GN-LFNAB)和外切酶 III(Exo III)辅助信号放大技术,建立了一种超灵敏的细胞裂解物中 microRNA(miRNA)的可视检测方法。Exo III 催化的目标再循环策略可生成大量单链 DNA 产物,GN-LFNAB 可以直观地检测到这些产物。通过实施独特的回收策略,我们证明了无需仪器就能检测到浓度低至 0.5 pM 的 miRNA,检测限超过了之前的报道。这种新型生物传感器具有超灵敏度,可用于可靠、高精度地监测细胞裂解液中的 miRNA。这种方法灵活、简单、经济、方便,为癌症诊断和临床生物医学提供了一种简单、快速的工具。这种新方法有可能大大改善癌症生物标志物的检测和监测,最终有助于更有效地诊断和治疗癌症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microchimica Acta
Microchimica Acta 化学-分析化学
CiteScore
9.80
自引率
5.30%
发文量
410
审稿时长
2.7 months
期刊介绍: As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.
期刊最新文献
Electrochemical sensor based on Cu2-xS/graphene heterostructures for sub-picomolar dopamine detection. Ionic liquid-assisted synthesis of In2O3 nanoparticles for ppb-level NO2 sensing at low temperature. Natural deep eutectic solvent-functionalized mesoporous graphitic carbon nitride-reinforced electrospun nanofiber: a promising sorbent in miniaturized on-chip thin film micro-solid-phase extraction prior to liquid chromatography-tandem mass spectrometry for measuring NSAIDs in saliva. Wearable electrochemical device based on butterfly-like paper-based microfluidics for pH and Na+ monitoring in sweat. Highly selective detection of breast cancer cells mediated by multi-aptamer and dye-loaded mesoporous silica nanoparticles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1