Heat and mass transfer of a circular porous moist object located in a triangular shaped vented cavity

IF 3.7 2区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Journal of Central South University Pub Date : 2024-07-23 DOI:10.1007/s11771-023-5335-3
Fatih Selimefendigil, Seda Özcan Çoban, Hakan F. Öztop
{"title":"Heat and mass transfer of a circular porous moist object located in a triangular shaped vented cavity","authors":"Fatih Selimefendigil, Seda Özcan Çoban, Hakan F. Öztop","doi":"10.1007/s11771-023-5335-3","DOIUrl":null,"url":null,"abstract":"<p>Heat and mass transfer of a circular-shaped porous moist object inside a two-dimensional triangle cavity is investigated by using finite element method. The porous object is considered to be a moist food sample, located in the middle of the cavity with inlet and outlet ports with different configurations of inlet/outlet ports. Convective drying performance is numerically assessed for different values of Reynolds numbers (between 50 and 250), dry air inlet temperature (between 40 and 80 °C) and different locations of the port. It is observed that changing the port locations has significant impacts on the flow recirculaitons inside the triangular chamber while convective drying performance is highly affected. The moisture content reduces with longer time and for higher Reynolds number (<i>Re</i>) values. Case P4 where inlet and outlet ports are in the middle of the walls provides the most effective configuration in terms of convective drying performance while the worst case is seen for P1 case where inlet and outlet are closer to the corners of the chamber. There is a 192% difference between the moisture reduction of these two cases at <i>Re</i>=250, <i>T</i>=80 °C and <i>t</i>=120 min.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Central South University","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11771-023-5335-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Heat and mass transfer of a circular-shaped porous moist object inside a two-dimensional triangle cavity is investigated by using finite element method. The porous object is considered to be a moist food sample, located in the middle of the cavity with inlet and outlet ports with different configurations of inlet/outlet ports. Convective drying performance is numerically assessed for different values of Reynolds numbers (between 50 and 250), dry air inlet temperature (between 40 and 80 °C) and different locations of the port. It is observed that changing the port locations has significant impacts on the flow recirculaitons inside the triangular chamber while convective drying performance is highly affected. The moisture content reduces with longer time and for higher Reynolds number (Re) values. Case P4 where inlet and outlet ports are in the middle of the walls provides the most effective configuration in terms of convective drying performance while the worst case is seen for P1 case where inlet and outlet are closer to the corners of the chamber. There is a 192% difference between the moisture reduction of these two cases at Re=250, T=80 °C and t=120 min.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
位于三角形通风腔中的圆形多孔湿润物体的传热和传质
采用有限元法研究了二维三角形空腔内圆形多孔湿润物体的传热和传质问题。多孔物体被认为是潮湿的食物样品,位于空腔中部,具有不同配置的入口和出口。针对不同的雷诺数值(50 至 250)、干燥空气入口温度(40 至 80 °C)和不同的端口位置,对对流干燥性能进行了数值评估。结果表明,改变端口位置会对三角腔内的气流再循环产生显著影响,同时对流干燥性能也会受到很大影响。时间越长,雷诺数 (Re) 值越高,含水量越低。进气口和出气口位于室壁中间的 P4 情况是对流干燥性能最有效的配置,而进气口和出气口靠近室角的 P1 情况则是最差的配置。在 Re=250、T=80 °C、t=120 分钟时,这两种情况的水分减少量相差 192%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Central South University
Journal of Central South University METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.10
自引率
6.80%
发文量
242
审稿时长
2-4 weeks
期刊介绍: Focuses on the latest research achievements in mining and metallurgy Coverage spans across materials science and engineering, metallurgical science and engineering, mineral processing, geology and mining, chemical engineering, and mechanical, electronic and information engineering
期刊最新文献
Multi-dimension and multi-modal rolling mill vibration prediction model based on multi-level network fusion Influence of rare earth element erbium on microstructures and properties of as-cast 8030 aluminum alloy The improvement of large-scale-region landslide susceptibility mapping accuracy by transfer learning Energy evolution model and energy response characteristics of freeze-thaw damaged sandstone under uniaxial compression A hybrid ventilation scheme applied to bi-directional excavation tunnel construction with a long inclined shaft
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1