Challenges in extracting nonlinear current-induced phenomena in Ca2RuO4

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Physical Review Materials Pub Date : 2024-07-24 DOI:10.1103/physrevmaterials.8.074411
Giordano Mattoni, Kazumi Fukushima, Shingo Yonezawa, Fumihiko Nakamura, Yoshiteru Maeno
{"title":"Challenges in extracting nonlinear current-induced phenomena in Ca2RuO4","authors":"Giordano Mattoni, Kazumi Fukushima, Shingo Yonezawa, Fumihiko Nakamura, Yoshiteru Maeno","doi":"10.1103/physrevmaterials.8.074411","DOIUrl":null,"url":null,"abstract":"An appealing direction to change the properties of strongly correlated materials is to induce nonequilibrium steady states by the application of a direct current. While access to these novel states is of high scientific interest, Joule heating due to current flow often constitutes a hurdle to identify nonthermal effects. The biggest challenge usually resides in measuring accurately the temperature of a sample subjected to direct current, and to use probes that give direct information of the material. In this work, we exploit the simultaneous measurement of electrical transport and magnetization to probe nonequilibrium steady states in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Ca</mi><mn>2</mn></msub><mi>Ru</mi><msub><mi mathvariant=\"normal\">O</mi><mn>4</mn></msub></mrow></math>. In order to reveal nonthermal current-induced effects, we employ a simple model of Joule self-heating to remove the effects of heating and discuss the importance of temperature inhomogeneity within the sample. Our approach provides a solid basis for investigating current-induced phenomena in highly resistive materials.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.074411","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An appealing direction to change the properties of strongly correlated materials is to induce nonequilibrium steady states by the application of a direct current. While access to these novel states is of high scientific interest, Joule heating due to current flow often constitutes a hurdle to identify nonthermal effects. The biggest challenge usually resides in measuring accurately the temperature of a sample subjected to direct current, and to use probes that give direct information of the material. In this work, we exploit the simultaneous measurement of electrical transport and magnetization to probe nonequilibrium steady states in Ca2RuO4. In order to reveal nonthermal current-induced effects, we employ a simple model of Joule self-heating to remove the effects of heating and discuss the importance of temperature inhomogeneity within the sample. Our approach provides a solid basis for investigating current-induced phenomena in highly resistive materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提取 Ca2RuO4 中非线性电流诱导现象的挑战
改变强相关材料特性的一个诱人方向是通过施加直流电来诱导非平衡稳态。虽然进入这些新状态具有很高的科学兴趣,但电流引起的焦耳热往往成为识别非热效应的障碍。最大的挑战通常在于如何准确测量直流样品的温度,以及如何使用能直接提供材料信息的探针。在这项工作中,我们利用同时测量电输运和磁化来探测 Ca2RuO4 的非平衡稳态。为了揭示非热流诱导效应,我们采用了一个简单的焦耳自热模型来消除加热效应,并讨论了样品内部温度不均匀性的重要性。我们的方法为研究高电阻材料中的电流诱导现象提供了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review Materials
Physical Review Materials Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
5.80
自引率
5.90%
发文量
611
期刊介绍: Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.
期刊最新文献
Impact of grain boundary energy anisotropy on grain growth Magnetization dependent anisotropic topological properties in EuCuP Fluorite-type materials in the monolayer limit Intrinsic origins of broad luminescence in melt-grown ZnGa2O4 single crystals Subjugating extensive magnetostructural temperature window and giant magnetocaloric effect in B-doped (MnNiSi)0.67(Fe2Ge)0.33 hexagonal system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1