Ligament morphology and elastic modulus of porous structure formed by liquid metal dealloying

Lijie Zou, Jun-Chao Shao, Hai-Jun Jin
{"title":"Ligament morphology and elastic modulus of porous structure formed by liquid metal dealloying","authors":"Lijie Zou, Jun-Chao Shao, Hai-Jun Jin","doi":"10.1016/j.jmrt.2024.07.091","DOIUrl":null,"url":null,"abstract":"We report that the morphology of ligaments also governs the mechanical properties of dealloyed porous materials, in addition to the topology- and size-effects that have been extensively studied previously. Porous Fe–Cr with similar relative density but different Cr content were prepared by liquid metal dealloying. The mechanical efficiency of this material, which is quantified by relative elastic modulus, decreases dramatically with increasing Cr content, although the relative density and network connectivity do not vary significantly. This is linked to the more severe spheroidization of Fe–Cr ligaments at higher Cr, driven by the large excess energy of solid-liquid interfaces and interface energy anisotropy of Fe–Cr under dealloying environment. A shape parameter is introduced to quantitatively account for this ligament-morphology effect. Current study suggests that tailoring interfacial energy, which was largely overlooked in previous studies, is essential to improving the mechanical efficiency of porous or nanoporous materials self-organized in dealloying.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmrt.2024.07.091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We report that the morphology of ligaments also governs the mechanical properties of dealloyed porous materials, in addition to the topology- and size-effects that have been extensively studied previously. Porous Fe–Cr with similar relative density but different Cr content were prepared by liquid metal dealloying. The mechanical efficiency of this material, which is quantified by relative elastic modulus, decreases dramatically with increasing Cr content, although the relative density and network connectivity do not vary significantly. This is linked to the more severe spheroidization of Fe–Cr ligaments at higher Cr, driven by the large excess energy of solid-liquid interfaces and interface energy anisotropy of Fe–Cr under dealloying environment. A shape parameter is introduced to quantitatively account for this ligament-morphology effect. Current study suggests that tailoring interfacial energy, which was largely overlooked in previous studies, is essential to improving the mechanical efficiency of porous or nanoporous materials self-organized in dealloying.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
液态金属脱合金形成的多孔结构的韧带形态和弹性模量
我们报告说,除了以前广泛研究过的拓扑和尺寸效应之外,韧带的形态也制约着脱合金多孔材料的机械性能。通过液态金属脱合金制备了相对密度相似但铬含量不同的多孔铁铬材料。这种材料的机械效率(以相对弹性模量量化)随着铬含量的增加而急剧下降,尽管相对密度和网络连通性没有显著变化。这与铬含量越高,Fe-Cr韧带的球化程度越严重有关,其原因是在脱合金环境下,Fe-Cr的固液界面和界面能量各向异性的过剩能量很大。为定量解释这种韧带形态效应,引入了一个形状参数。目前的研究表明,定制界面能对于提高多孔或纳米多孔材料在脱合金过程中自组织的机械效率至关重要,而这一点在以往的研究中大多被忽视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revealing the microstructural evolution and mechanical response of repaired Fe–Cr–Si based alloy by directed energy deposition Non-planar additive manufacturing of pre-impregnated continuous fiber reinforced composites using a three-axis printer Microstructure and mechanical property of high-density 7075 Al alloy by compression molding of POM-based feedstock Effect of microstructural inheritance window on the mechanical properties of an intercritically annealed Q&P steel Clarifying the effect of irradiation and thermal treatment on the austenitic microstructure and austenitic hardening in austenitic stainless steel weld metal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1