Tianhong Zhou, Li Zhu, Xiaonan Luo, Jiancheng Yu, Chuchu Ye, Xin Zhou, Xian Tong, Zhaoping Chen, Yuncang Li, Jixing Lin, Cuie Wen, Jianfeng Ma
{"title":"Effects of external staining on mechanical, optical, and biocompatibility properties of additively manufactured 3Y-TZP ceramic for dental applications","authors":"Tianhong Zhou, Li Zhu, Xiaonan Luo, Jiancheng Yu, Chuchu Ye, Xin Zhou, Xian Tong, Zhaoping Chen, Yuncang Li, Jixing Lin, Cuie Wen, Jianfeng Ma","doi":"10.1016/j.jmrt.2024.07.126","DOIUrl":null,"url":null,"abstract":"Three mole percent yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) ceramics are exemplary materials for dental restoration due to their high mechanical strength, fracture toughness, chemical endurance, and biocompatibility. Nevertheless, 3Y-TZP ceramics are opaque and their CAD/CAM manufacturing process may cause micro-cracks in conventional clinical practice. In this study, 3Y-TZP ceramic samples were prepared using vat photopolymerization, pre-sintering, external staining, and final high-temperature sintering. The microstructures, mechanical properties, optical properties, and cytotoxicity of the 3Y-TZP ceramic samples were investigated. The results indicate that with increasing Fe concentration of staining solution from 0.1 mol/L to 0.3 mol/L and increasing staining time from 5 s to 30 min, the 3Y-TZP ceramic samples showed a tetragonal crystal structure of zirconia with densely packed grains and a slight increase in grain size. The flexural strength, Vickers hardness, and fracture toughness of 3Y-TZP ceramic samples stained in 0.1–0.3 mol/L Fe solution for 5 s to 3 min were all greater than 665 MPa, 11.9 GPa, and 5 MPa m, respectively, meeting the mechanical requirements for clinical application. Colorimetric analysis revealed a decrease in L* (black-white index) from 90.4 to 81.3, an increase in a* (green-red index) from −1.5 to 3.2, and an increase in b* (blue-yellow index) from 11.6 to 20.3, approximating the commercial VITA 3D-Master Shade Guide chromaticity. Furthermore, the 3Y-TZP ceramic samples exhibited a cell viability of 90% or higher toward L929 cells.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmrt.2024.07.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Three mole percent yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) ceramics are exemplary materials for dental restoration due to their high mechanical strength, fracture toughness, chemical endurance, and biocompatibility. Nevertheless, 3Y-TZP ceramics are opaque and their CAD/CAM manufacturing process may cause micro-cracks in conventional clinical practice. In this study, 3Y-TZP ceramic samples were prepared using vat photopolymerization, pre-sintering, external staining, and final high-temperature sintering. The microstructures, mechanical properties, optical properties, and cytotoxicity of the 3Y-TZP ceramic samples were investigated. The results indicate that with increasing Fe concentration of staining solution from 0.1 mol/L to 0.3 mol/L and increasing staining time from 5 s to 30 min, the 3Y-TZP ceramic samples showed a tetragonal crystal structure of zirconia with densely packed grains and a slight increase in grain size. The flexural strength, Vickers hardness, and fracture toughness of 3Y-TZP ceramic samples stained in 0.1–0.3 mol/L Fe solution for 5 s to 3 min were all greater than 665 MPa, 11.9 GPa, and 5 MPa m, respectively, meeting the mechanical requirements for clinical application. Colorimetric analysis revealed a decrease in L* (black-white index) from 90.4 to 81.3, an increase in a* (green-red index) from −1.5 to 3.2, and an increase in b* (blue-yellow index) from 11.6 to 20.3, approximating the commercial VITA 3D-Master Shade Guide chromaticity. Furthermore, the 3Y-TZP ceramic samples exhibited a cell viability of 90% or higher toward L929 cells.